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ELEMENTARY PARTICLES AND FIELDS
Theory

Small-pppTTT Production of ηccc Mesons
within the Soft Gluon Resummation Approach
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Abstract—In this article we describe the ηc production in proton–proton collisions at small values of
the transverse momentum of the charmonium. Soft gluon resummation is used as a TMD factorization
approach. At small transverse momenta, the color singlet contribution dominates, allowing us to use ηc as
a test of the resummation scheme for the noncollinear gluon PDF. The cross sections of ηc production at√
s = 27 GeV, 115 GeV and 13 TeV are predicted.
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1. INTRODUCTION

Transverse Momentum Dependent (TMD) fac-
torization is an approach to represent a final state
cross section as a convolution of a hard scale partonic
cross section and TMD parton distribution functions
(PDF) [1]. One of the main tasks for the TMD
development is the extraction of the TMD PDFs and
this is part of the future experimental program of the
SPD NICA project, where proton–proton collisions
up to energies of

√
s = 27 GeV are planned [2]. The

production of ηc mesons is an important probe for
TMD analysis and extraction of TMD PDFs, since
ηc mesons are produced dominantly via the color sin-
glet channel within the nonrelativistic QCD approach
(NRQCD) [3]. That’s why some additional degrees
of freedom like color octet contributions are reduced
in the ηc description as opposed to J/ψ production,
for instance. In the current paper we apply the Soft
Gluon Resummation (SGR) approach as a TMD fac-
torization framework to ηc production at small trans-
verse momenta.

2. SOFT GLUON RESUMMATION
APPROACH

The TMD factorization is a general approach that
allows to represent the final state cross section as
a convolution of the hard scale partonic subprocess
cross section and PDFs in a small transverse mo-
mentum domain pT � Q, where Q is a hard scale
equal to the mass M of the final observable state for
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heavy quarkonium production [1]. The partonic sub-
process refers to the interaction of gluons or quarks
from the parent hadron and it is calculated within
the perturbative QCD and using some hadronization
model. The TMD PDF describes the distribution of
initial partons (gluons or quarks) inside a proton with
respect to longitudinal and transverse components
of their 4-momenta. They depend on two scales: a
renormalization scale μ and a rapidity variable ζ . The
TMD PDF evolution with these scales is described by
the Collins–Soper equations [4]. The SGR approach
is a framework for modelling the TMD PDFs and
implementing their evolution [5, 6].

The momenta of the initial partons within the
TMD can be written as qμi = xip

μ
i + qμiT , where xi are

the longitudinal momentum fractions, pμi are the mo-
menta of the parent protons, q2iT = −q2

iT are trans-
verse components of momenta. The initial partons are
prescribed to be on-shell, q2i = 0, since corrections of
order (q2

iT/M
2) are neglected here and after.

In the TMD framework, the factorized cross sec-
tion within the SGR can be written as [1]:

dσ =

∫
dx1 dx2 dq1T dq2T

× F (x1,q1T, μ, ζ1)F (x2,q2T, μ, ζ2) dσ̂, (1)

where F (x,qT ) are TMD PDFs, dσ̂ is a hard scale
cross section of a partonic subprocess 2 → 1 which
is a leading contribution for small transverse momen-
tum spectrum.

The scale evolution of TMD PDFs can be imple-
mented in a space of an impact parameter bT after the
Fourier-transform of the PDFs:

F̂ (x,bT, μF , ζ)
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=

∫
d2qT eiqTbTF (x,qT, μF , ζ). (2)

The Collins–Soper equations lead to a solution which
realizes the evolution from the initial to the final scale
in the perturbative Sudakov factor [5, 7]:

SP (Q,μb, bT )

=

Q2∫

μ2
b

dμ′2

μ′2

[
A(μ′) ln

Q2

μ′2 +B(μ′)

]
, (3)

where μ2 = ζ = Q2 is a standard choice for the
scales. The expansion of the coefficients A and B
is performed as follows:

A(μ′) =
∞∑
n=1

A(n)

(
αs(μ

′)

π

)n

,

B(μ′) =
∞∑
n=1

B(n)

(
αs(μ

′)

π

)n

. (4)

In the leading logarithmic (LL) and LO in the αs ap-
proximations of the SGR calculation the coefficients
are A(1) = CA and B(1) = −(11CA − 2Nf )/6, where
Nf is a number of flavors and CA = Nc with a number
of colors Nc. The coefficients for the next orders have
also been calculated, see [5]. The nonperturbative
Sudakov factor SNP suppresses large values of bT ,
where SP is no longer relevant, and contains informa-
tion about the transverse momentum distribution of
the initial partons. We take it in the following form [8]:

SNP (bT , Q) =

[
g1 ln

Q

2QNP

+ g2

(
1 + 2g3 ln

10xx0
x0 + x

)]
b2T (5)

which was extracted from the SIDIS data for initial
quarks. But we use the standard color factor CA/CF

to apply it to gluons. The PDFs within the SGR ap-
proach can be expressed with collinear PDFs convo-
luted with Wilson coefficient functions C(x, b, μ′) [5]:

C(x, b, μ′) =
∞∑
n=0

C(n)(x, b, μ′)

(
αs(μ

′)

π

)n

. (6)

In the LO approximation the SGR PDFs are reduced
just to the collinear PDFs at the low initial scale:
F̂ (x, bT ) = f(x, μ′

b) +O(αs) +O(bTΛQCD). Such
expressions for the SGR PDF and its evolution are
applicable in an impact parameter interval b0/Q �
bT � bT,max. The lower boundary is prescribed as
μ′
b = Qb0/(QbT + b0), the upper one is realized with a

cutoff bT → b∗T (bT ) = bT /
√

1 + (bT /bT, max)2 [6]. We
take 1.5 GeV−1 as a bT, max value [9].

Thus, the final expression for the differential cross
section is written as follows

d2σ

dpTdy
=

πpT |M(2 → 1)|2
M2s

H(Q2,M2)

×
∫

dbT bT J0(pT bT ) e
−SP e−SNP F̂1 F̂2, (7)

where y and pT are rapidity and transverse momen-
tum of charmonium,

√
s is a centre-of-mass energy,

J0 is a zeroth order Bessel function of the first kind,
F̂i ≡ F̂ (xi, b

∗
T ) is the Fourier-transformed parton dis-

tribution, M(2 → 1) is the LO amplitude of a hard
partonic subprocess and H(Q2,M2) is the hard part
including high-order virtual corrections.

3. NONRELATIVISTIC QCD

We use the conventional approach of the nonrela-
tivistic QCD (NRQCD) to describe of a bound state
C formation from a produced cc̄-quark pair [3]. The
NRQCD allows us to expand the J/ψ wave function
into a Fock state series with respect to the relative
velocity of the constituent quarks υ (for charmonium
υ2 ≈ 0.3). The leading term in the series refers to
a color singlet term with the same set of quantum
numbers as the quark pair has in an observable char-
monium state. This approximation to NRQCD is
called the color singlet model (CSM). Therefore, the
cross section of the final state production is a sum of
the Fock state production terms, and each of them
is factorized into the cross section of the quark pair
production in that Fock state (it is denoted [n] be-
low) and a corresponding long-distance matrix ele-
ment 〈OC [n]〉 (LDME) [10]:

dσ̂(a+ b → C +X)

=
∑
n

dσ̂(a+ b → cc̄[n] +X)

× 〈OC [n]〉/(NcolNpol), (8)

where Ncol and Npol are for averaging over polariza-
tion and color states.

The quark pair production cross section is calcu-
lated within the perturbative QCD: an amplitude with
the cut quark lines is projected onto states with con-
sidered momentum, spin and color quantum num-
bers. The color singlet LDMEs are calculated within
heavy quarkonium potential models or with experi-
mental data on quarkonium decay [11]. The octet
color LDMEs have to be extracted directly from ex-
perimental data on quarkonium production after sub-
tracting the singlet contribution.

Within the TMD factorization, the 2 → 1 partonic
subprocesses are the main contributions at small-pT
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Fig. 1. Differential cross section of the ηc production at forward and mid-rapidity for the LHCb,
√
s = 13 TeV. Solid lines—

LL-LO calculations, dashed lines—NLL-LO calculations.
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Fig. 2. Differential cross section of the ηc production for
√
s = 27 and 115 GeV. Solid lines—LL-LO calculations, dashed

lines—NLL-LO calculations.

production. As for the Fock states, the color singlet

state 1S
(1)
0 is considered as the leading one, its matrix

element within the NRQCD is

|M(g + g → ηc[1S
(1)
0 ])|2

=
2π2α2

s

9M
〈Oηc [1S

(1)
0 ]〉, (9)

where M is a mass of ηc meson. Only the gluon–
gluon fusion subprocesses are considered in our work
because of their dominance over quark–antiquark
annihilation.

4. CALCULATION RESULTS
We provide here estimations for ηc production at

small pT where the color singlet state contribution
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1S
(1)
0 is in the leading order of the NRQCD. There-

fore, in contrast to the case of J/ψ production, there is
no need to search for the source of the octet LDMEs
in order to fit them which is a problematic task due
to the narrow fitting region pT � M . In any case,
there is no data available for the ηc production at the
pT � M . For ηc we can only evaluate the singlet con-
tribution with a known LDME which we’ve obtained
from the relation

〈Oηc [1S
(1)
0 ]〉 = 1

3
〈OJ/ψ[3S

(1)
1 ]〉 (10)

and the value of 〈OJ/ψ[3S
(1)
1 ]〉 = 1.3 GeV3 [12]. We

can only make theoretical predictions for the ηc pro-
duction cross section and, perhaps, compare its gen-
eral behaviour with the predictions of some other
TMD approaches.

The probes for ηc in the LL-LO and NLL-LO
accuracies are shown in Fig. 1 for the LHCb energy
of

√
s = 13 TeV. The difference between the NLL

and the LL calculations is about 10% which is, for
example, less than the expected uncertainty due to
the hard scale variation. However, detailed TMD
analysis shows that the NNLL-NLO accuracy is only
sufficient for a precise ηc description [13]. That’s why
the NLO calculations and comparison with the LO
accuracy should also be done.

Figure 2 shows predictions for the ηc production
within the SGR at

√
s = 27 GeV for the SPD NICA

and
√
s = 115 GeV for the AFTER experiment. The

difference between the LL and the NLL calculations
is up to 25% for these rather low energies. We can
also compare the AFTER prediction with the cor-
responding result within another TMD factorization
approach—a spectator model [14]. We can see that
the NLL calculation within the SGR matches quite
well with the spectator model predictions [15].
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