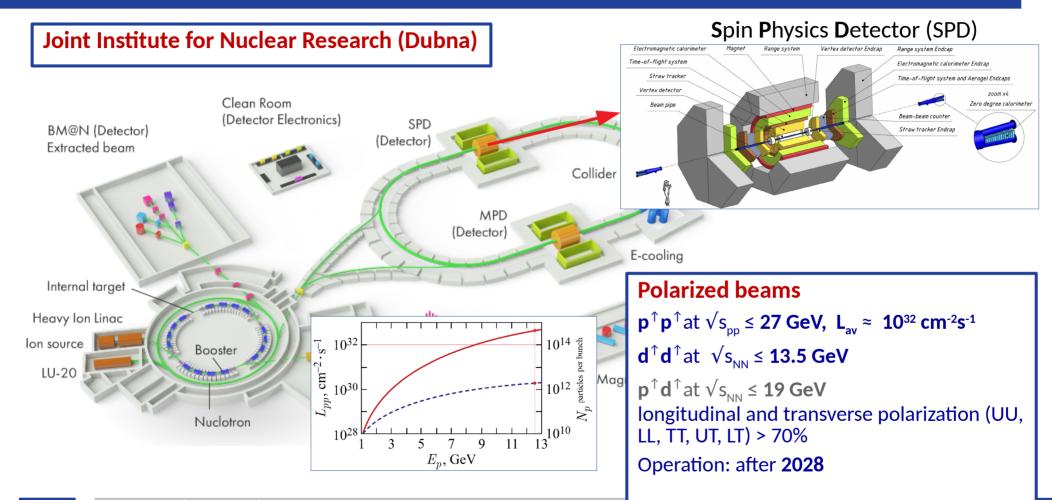
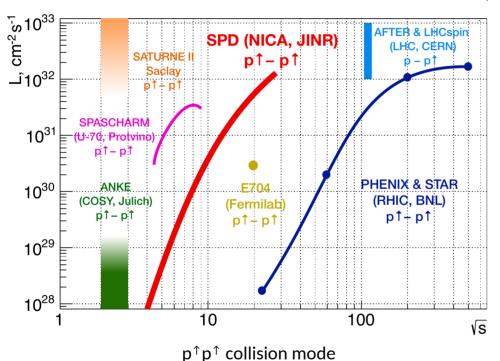


Статус эксперимента SPD на ускорительном комплексе NICA


Игорь Денисенко iden@jinr.ru

57-я Зимняя Школа НИЦ КИ ПИЯФ

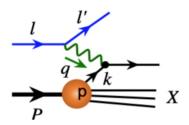
18.03.2025


Nuclotron-based Ion Collider fAcility (NICA)

NICA and other facilities

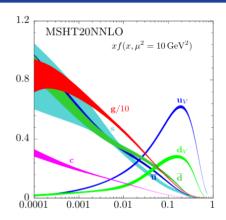
SPD CDR (arXiv:2102.00442)

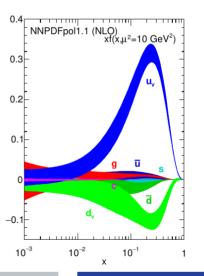
D	ann	DING (20)	FIG (24)	A ECTED	0 : 1110
Experimental	SPD	RHIC [29]	EIC [26]	AFTER	SpinLHC
facility	@NICA [30]			@LHC [24]	[25]
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	p^{\uparrow} - p^{\uparrow}	p^{\uparrow} - p^{\uparrow}	e^{\uparrow} - p^{\uparrow} , d^{\uparrow} , 3 He $^{\uparrow}$	p - p^{\uparrow} , d^{\uparrow}	p - p^{\uparrow}
& polarization	d^{\uparrow} - d^{\uparrow}				
	p^{\uparrow} - d , p - d^{\uparrow}				
Center-of-mass	≤27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (ep)	115	115
energy $\sqrt{s_{NN}}$, GeV	\leq 13.5 (<i>d</i> - <i>d</i>)	500			
	\leq 19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	\sim 0.1 (d-d)			$\sim 10 \ (p-p)$	
Physics run	>2025	running	>2030	>2025	>2025


NICA is unique for double polarized $d^{\uparrow}d^{\uparrow}$ collisions at these energies.

Hadron structure

- Without understanding how bound states are formed in QCD we can't say we understand this theory.
- Exploring hadron structure is way to understand how hadrons are build in terms of the fundamental degrees of freedom in QCD.
- Nucleons are the fundamental building blocks of nature, which make up essentially all visible matter in the universe.
- Nucleons has complex and dynamic internal structure to be reviled in modern experiments.




Collinear nucleon structure

$$E' \frac{\mathrm{d}\sigma_{ep \to e'X}}{\mathrm{d}^3 l'} \approx \sum_{i} \int d\xi \, f_{i/p}(\xi) \, E' \frac{d\hat{\sigma}_{ei \to e'X}}{d^3 l'}$$

- DIS process and QCD factorization
- collinear PDFs $f_{i/p}$ can be interpreted as probability densities of partons (quarks and gluons) carrying momentum fraction ξ (usually x) in hadron
- Polarized PDFs depend on nucleon spin (unpolarized, helicity and transversity PDFs)
 - $\Delta f_i = f_i^{\rightarrow} f_i^{\leftarrow}$ (longitudinally polarized proton)
 - $h_{1i} = f_i^{\uparrow} f_i^{\downarrow}$ (transversely polarized proton)

Spin crises: how spin of nucleon is build from its constituents?

Infinite-momentum frame decomposition (Jaffe-Manohar sum rule)

$$J = \frac{1}{2}\Delta\Sigma + L_q^{JM} + \Delta G + L_G,$$

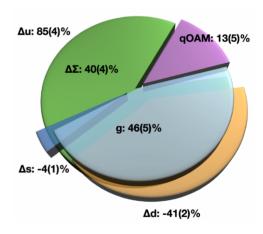
$$q, \ \bar{q} \ \text{spin} \quad q, \bar{q} \quad \text{gluons gluons}$$
 (valence and OAM spin OAM sea)

• EMC experiment
$$\Rightarrow \int_0^1 dx \Delta \Sigma(x) \approx 0.06$$

[E. Leader and M. Anselmino, Z. Phys. C 41, 239 (1988)]

• COMPASS, HERMES
$$\Rightarrow \int_0^1 dx \Delta \Sigma(x) \approx 0.3$$

[V. Y. Alexakhin et al. (COMPASS Collaboration), Phys.Lett. B 647, 8 (2007)] [A. Airapetian et al. (HERMES Collaboration), Phys.Rev. D 75, 012007 (2007)]


$$^{\circ}$$
 Phenix, Star, compass $\Rightarrow \int_{0.05}^{0.2} dx \Delta G(x) \approx 0.2$

[D. de Florian et al (DSSV Collaboration). Phys Rev. Lett. 113, 012001 (2014)] [E. R. Nocera et al. (NNPDF Collaboration), Nuc. Phys. B 887, 276 (2014)]

Frame independent decomposition (Ji's sum rule)

$$J = \frac{1}{2}\Delta\Sigma + L_q^{Ji} + J_G, \label{eq:Joint}$$
 gluons total AM

Lattice calculations arXiv:2112.08416

- ~38-46% gluons
- ~13-18% from quark OAM (with very large uncertainties)

Most of the slide taken from Llilet Calerdo Dias (IWHSS-CPHI24)

Nucleon tomography

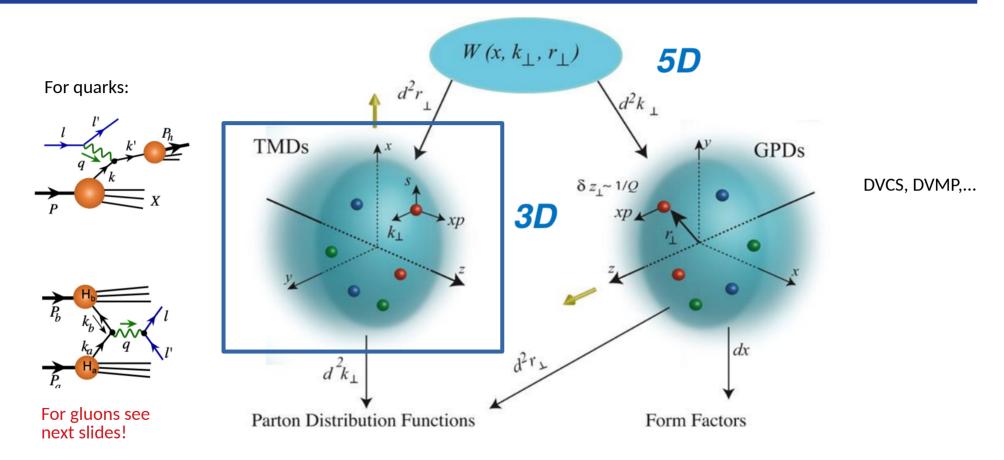
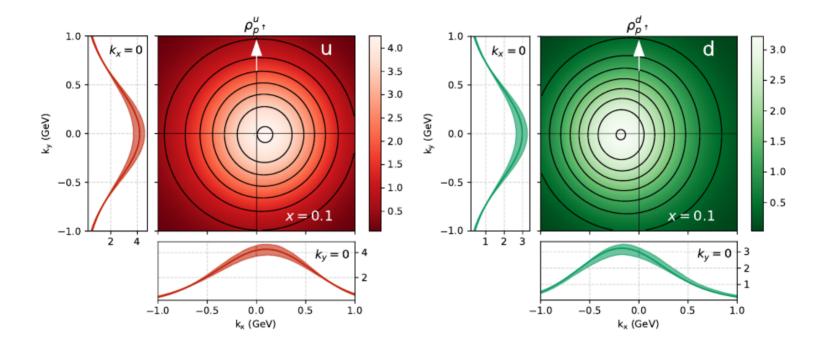
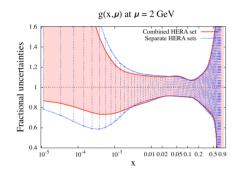


Figure credit: J.-P. Cheng

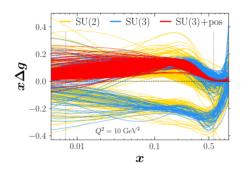
TMD distributions


- QCD factorization for TMD PDFs is proven for some processes (DY, SIDIS, higgs production,...)
- Significant progress on quark TMDs over the last decades (for details see e.g. TMD Handbook, PLB 827, 136961 (2022))

Leading Quark TMDPDFs


		Quark Polarization		
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	f_1 = \bullet Unpolarized		$h_1^{\perp} = \underbrace{\dagger} - \underbrace{\bullet}$ Boer-Mulders
	L		$g_1 = \bigcirc - \bigcirc \rightarrow$ Helicity	$h_{1L}^{\perp} = \longrightarrow - \longrightarrow$ Worm-gear
	т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}} - \underbrace{\bullet}_{\text{Sivers}}$	$g_{1T}^{\perp} = -$ Worm-gear	$h_1 = 1 - 1$ Transversity $h_{1T}^{\perp} = 1 - 1$ Pretzelosity

Quark TMDs



The density distribution of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the reader as a function of (k_x, k_y) at $Q^2 = 4 \text{ GeV}^2$ (PLB 827, 136961 (2022))

What do we know about gluons?

Uncertainty of unpolarized gluon PDF based on HERA data PRD82, 074024 (2010)

Extraction of gluon helicity distributions by the JAM Collaboration (2022)

Alessandro Bacchetta at IWHSS-CPHI24:

- Good knowledge of x-dependence of f₁ and g_{1L}
- Some hints on the k_T dependence of f₁

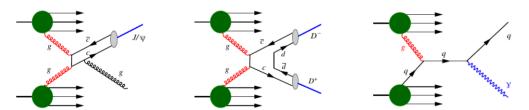
Our knowledge on gluon TMD remains rather scarce.

gluon pol.

nucleon pol.

	U	circular	linear
U	f_1^g		$h_1^{\perp g}$
L		g_1^g	$h_{1L}^{\perp g}$
T	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, h_{1T}^{\perp g}$

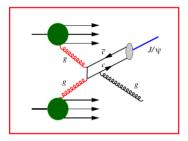
Leading twist gluon TMD PDFs (two times more due to proper gauge link choice)

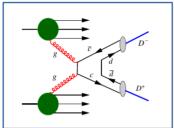

 $h_{_{_{_{1}}}}^{g}$ is nonzero only for deuteron.

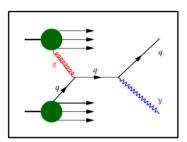
Gluon TMDs and the SPD experiment

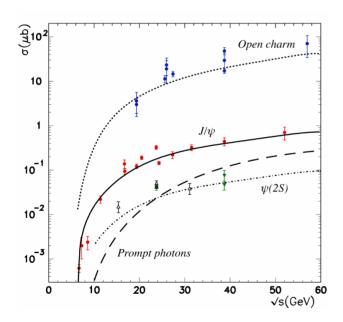
Main goal of the experiment - spin-dependent gluon structure of proton and deuteron.

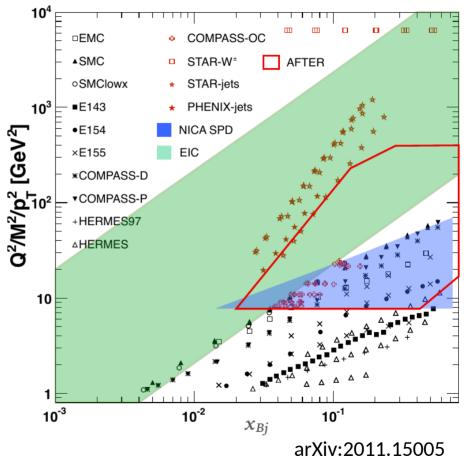
• Three probes of gluon structure chosen in this energy range:

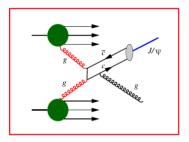

- Measurements at SPD should help to improve our understanding of QCD and resolve spin crisis.
- Many other aspects of QCD to be studied in such collisions.

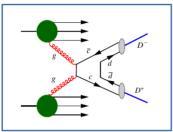

gluon pol.

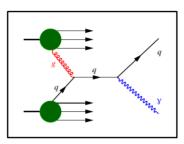

		U	circular	linear
ı pol.	U	f_1^g		$h_1^{\perp g}$
nucleon pol.	L		g_1^g	$h_{1L}^{\perp g}$
nu	T	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, h_{1T}^{\perp g}$

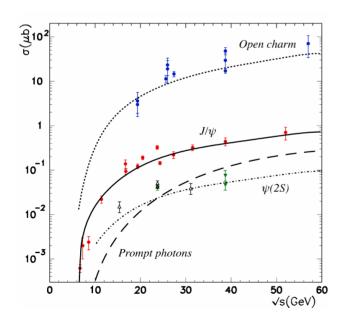

 h_1^g is nonzero only for deuteron.

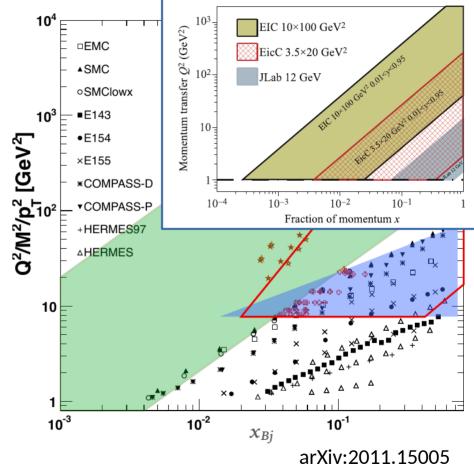

SPD kinematic coverage

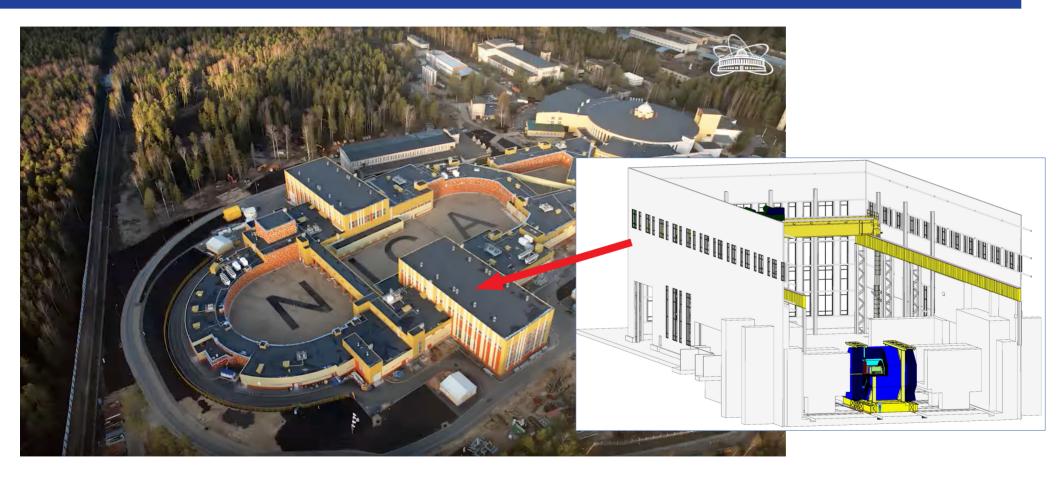


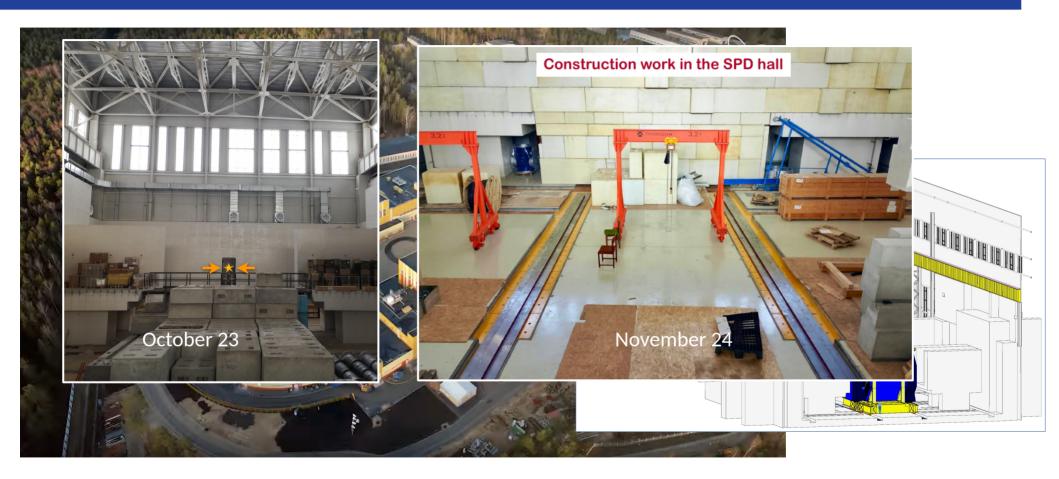







SPD kinematic coverage

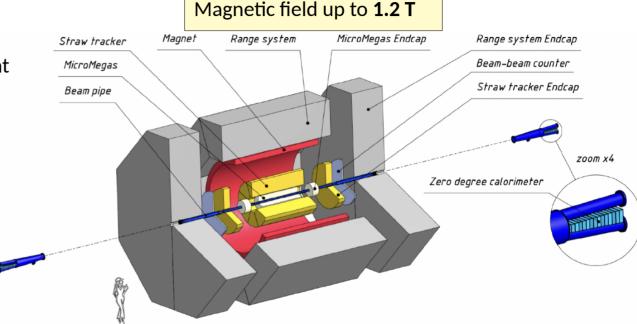




Construction site

SPD hall

SPD initial stage


SPD TDR: Natural Science Review 1 1 (2024) (arXiv:2404.08317)

- Polarized and unpolarized phenomena at low energies (3.4 GeV < √s_{pp} < 9.4 GeV) and reduced luminosity
- p-p, d-d, and ion collisions (up to Ca)
- Simplified detector set-up
- Up to 2 years of data taking

Range System muon identification and coarse hadron calorimetry

Straw tracker:

- $\sigma \sim 150 \, \mu m$
- $\sigma(dE/dx) = 8.5\%$

Micromegas central tracker:

σ ~ 150 μm

BBC and **ZDC** for online polarimetry

SPD initial stage

ISSN 1063-7796, Physics of Particles and Nuclei, 2021, Vol. 52, No. 6, pp. 1044-1119. © Pleiades Publishing, Ltd., 2021.

Physical program:

- spin effects in p-p and d-d scattering
- spin effects in hyperon production
- multiquark correlations
- color transparency in quasi elastic pd
- large pT hadron production to study diquark structure of proton
- dibaryon resonances
- hypernuclei
- physics of light and intermediate nuclei collisions
- open charm and charmonia production near threshold
- antiproton production measurements for astrophysics and BSM search

• ...

Possible Studies at the First Stage of the NICA Collider Operation with Polarized and Unpolarized Proton and Deuteron Beams

```
V. V. Abramov<sup>a</sup>, A. Aleshko<sup>b</sup>, V. A. Baskov<sup>c</sup>, E. Boos<sup>b</sup>, V. Bunichev<sup>b</sup>, O. D. Dalkarov<sup>c</sup>, R. El-Kholy<sup>d</sup>,
A. Galoyan<sup>e</sup>, A. V. Guskov<sup>f</sup>, V. T. Kim<sup>g, h</sup>, E. Kokoulina<sup>e, i</sup>, I. A. Koop<sup>k, l, m</sup>, B. F. Kostenko<sup>m</sup>,
A. D. Kovalenko<sup>e, †</sup>, V. P. Ladygin<sup>e</sup>, A. B. Larionov<sup>o, n</sup>, A. I. L'vov<sup>c</sup>, A. I. Milstein<sup>i, k</sup>, V. A. Nikitin<sup>e</sup>,
N. N. Nikolaev<sup>p, z</sup>, A. S. Popov<sup>j</sup>, V. V. Polyanskiy<sup>c</sup>, J.-M. Richard<sup>q</sup>, S. G. Salnikov<sup>j</sup>, A. A. Shavrin<sup>r</sup>,
P. Yu. Shatunov<sup>j, k</sup>, Yu. M. Shatunov<sup>j, k</sup>, O. V. Selyugin<sup>n</sup>, M. Strikman<sup>s</sup>, E. Tomasi-Gustafsson<sup>t</sup>,
V. V. Uzhinsky<sup>m</sup>, Yu. N. Uzikov<sup>f, u, v, *</sup>, Qian Wang<sup>w</sup>, Qiang Zhao<sup>x, y</sup>, and A. V. Zelenov<sup>g</sup>

<sup>a</sup> NRC "Kurchatov Institute"—IHEP, Protvino, Moscow oblast, 142281 Russia

<sup>b</sup> Skobeltsyn Institute of Nuclear Physics, MSU, Moscow, 119991 Russia

<sup>c</sup> Lebedev Physical Institute, Moscow, 119991 Russia

<sup>d</sup> Astronomy Department, Faculty of Science, Cairo University, Giza, 12613 Egypt

<sup>e</sup> Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research,

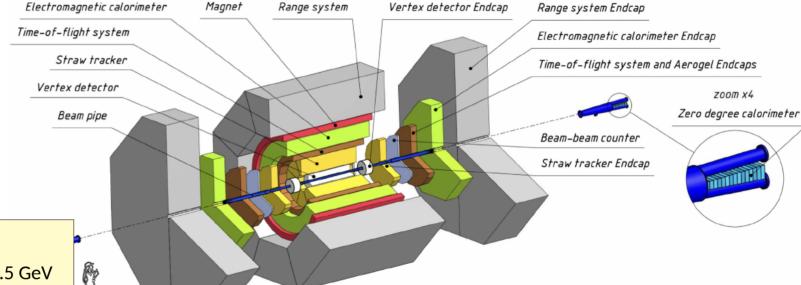
Dubna, Moscow oblast, 141980 Russia

<sup>f</sup> Dzhelepov Laboratory of Nuclear problems, Joint Institute for Nuclear Researches, Dubna, Moscow oblast, 141980 Russia

<sup>g</sup> Petersburg Nuclear Physics Institute, NRC KI, Gatchina, Russia

<sup>h</sup> St. Petersburg Polytechnic University, St. Peterburg, Russia
```

Physics of Particles and Nuclei 52, 1044 (2021) arXiv:2102.08477


i Sukhoi State Technical University of Gomel, Gomel, 246746 Belarus

J Rudker Institute of Nuclear Physics of SR RAS Novosibirsk 630000 Russia

SPD final layout

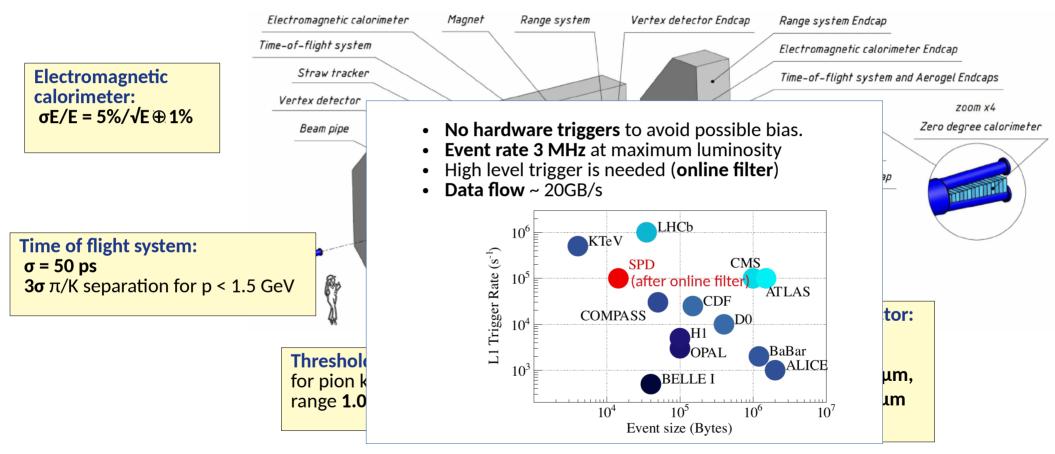
SPD TDR: Natural Science Review 1 1 (2024) (arXiv:2404.08317)

Electromagnetic calorimeter: σE/E = 5%/√E⊕1%

Time of flight system:

 σ = 50 ps

3σ π/K separation for p < 1.5 GeV


FARICH in *endcaps* for pion/kaon separation for particle momentum up to **5.5 GeV**

Silicon vertex detector:

- MAPS (4 layers): $\sigma = 10 \mu m$
 - DSSD (3 layers): $\sigma_{\varphi} = 27.4 \, \mu \text{m},$ $\sigma_{\varphi} = 81.3 \, \mu \text{m}$

SPD final layout

SPD TDR can be found at http://spd.jinr.ru/spd-cdr/

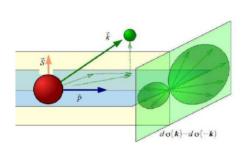
SPD 2-nd stage

Physical program:

- unpolarized and polarized proton and deuteron structure:
 - gluon helicty
 - gluon TMDs (Sivers and Boer-Mulders)
 - gluon transversity and tensor polarized gluon distribution in deuteron
 - unpolarized proton and deuteron gluon PDF at high x
 - non-nucleonic degrees of freedom in deuteron...
- tests of QCD factorization
- charmonia production mechanisms
- ...

Progress in Particle and Nuclear Physics

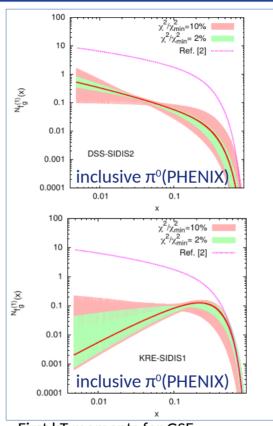
Volume 119, July 2021, 103858

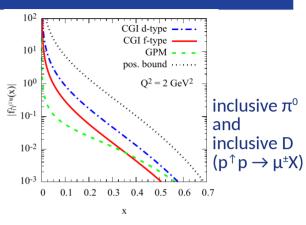


Review

On the physics potential to study the gluon content of proton and deuteron at NICA SPD

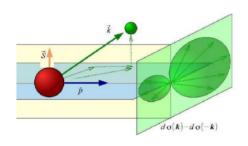
A. Arbuzov ^a, A. Bacchetta ^{b, c}, M. Butenschoen ^d, F.G. Celiberto ^{b, c, e, f}, U. D'Alesio ^{g, h}, M. Deka ^a, I. Denisenko ^a, M.G. Echevarria ⁱ, A. Efremov ^a, N.Ya. Ivanov ^{a, j}, A. Guskov ^{a, k} $\stackrel{\boxtimes}{\sim}$ A. Karpishkov ^{l, a}, Ya. Klopot ^{a, m}, B.A. Kniehl ^d, A. Kotzinian ^{j, o}, S. Kumano ^p, J.P. Lansberg ^q, Keh-Fei Liu ^r ... O. Teryaev ^a


Gluon Sivers function


- GSF correlation between transverse spin and gluon k₊
- Can be indirectly related to gluon OAM
- Probed by TSSA

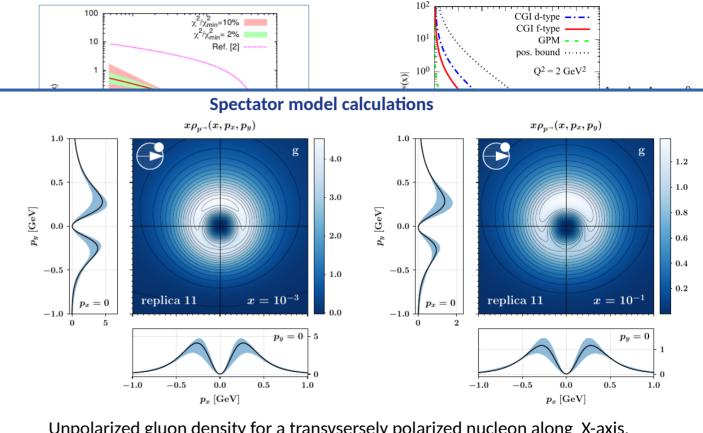
$$\sigma(\phi) \propto 1 + P \cdot A_N \sin(\phi_{\text{pol}} - \phi)$$

 Poorly known, extracted in GPM, CGI-GPM, and very recently TMD approaches (spectator model)

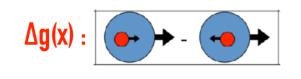


First kT moments for GSF, GPM (JHEP09(2015)119)

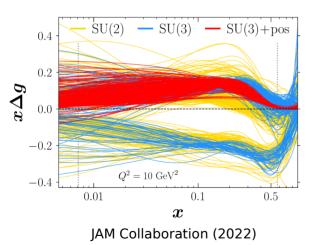
Maximized first kT moments for GSF, CGI-GPM (PRD99, 036013 (2019))

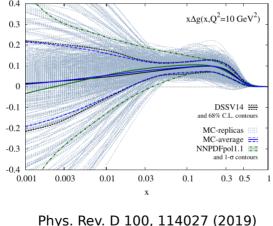

Gluon Sivers function

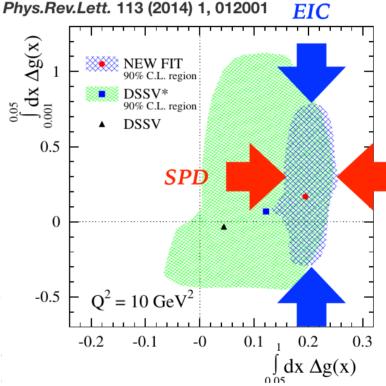
- GSF correlation between transverse spin and gluon k₊
- Can be indirectly related to gluon OAM
- Probed by TSSA


$$\sigma(\phi) \propto 1 + P \cdot A_N \sin(\phi_{\text{pol}} - \phi)$$

 Poorly known, extracted in GPM, CGI-GPM, and very recently TMD approaches (spectator model)



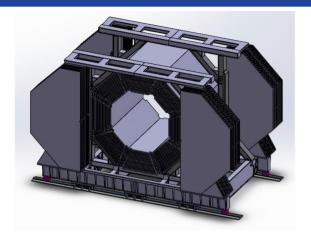

Unpolarized gluon density for a transvsersely polarized nucleon along X-axis, (Q=1.64 GeV) in the **spectator model** - Bacchetta, Celiberto, Radici (EPJC 84 (2024) 6, 576)


Gluon helicity distribution

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$

Other extractions: LSS15, JAM17

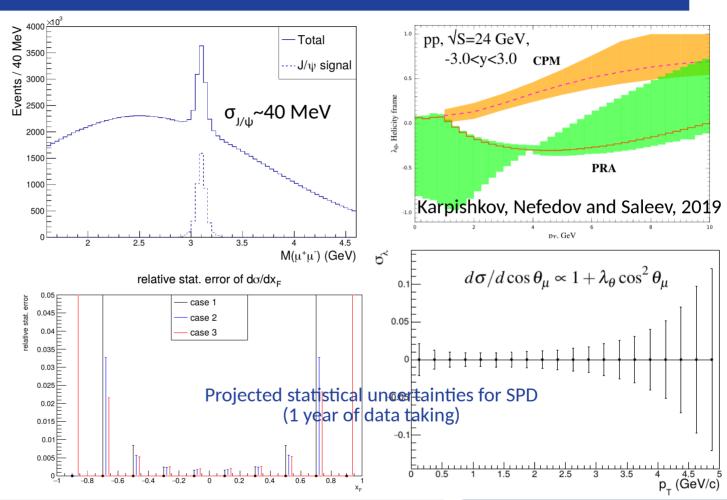
Charmonia production as a probe of gluon TMD PDFs

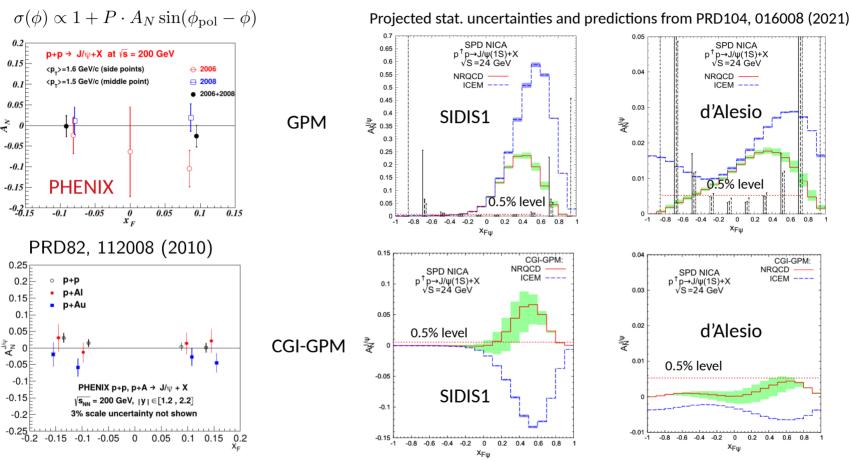

Charmonia production

- dominated by gluon-gluon fusion
- high cross-section
- J/ ψ can be easily reconstructed from the $\mu^+\mu^-$ decay, $\psi(2S)$ and χ_- can be reconstructed based on this decay
- hadronization of cc pair is not well understood theoretically:
 - (Improved) Color Evaporation Model
 - CSM
 - NRQCD
- TMD factorization does not always hold
- η_c might be the best probe, but its observation is challenging experimentally
- the J/ψ signal is "contaminated" by feed-down contributions

Charmonia production at SPD

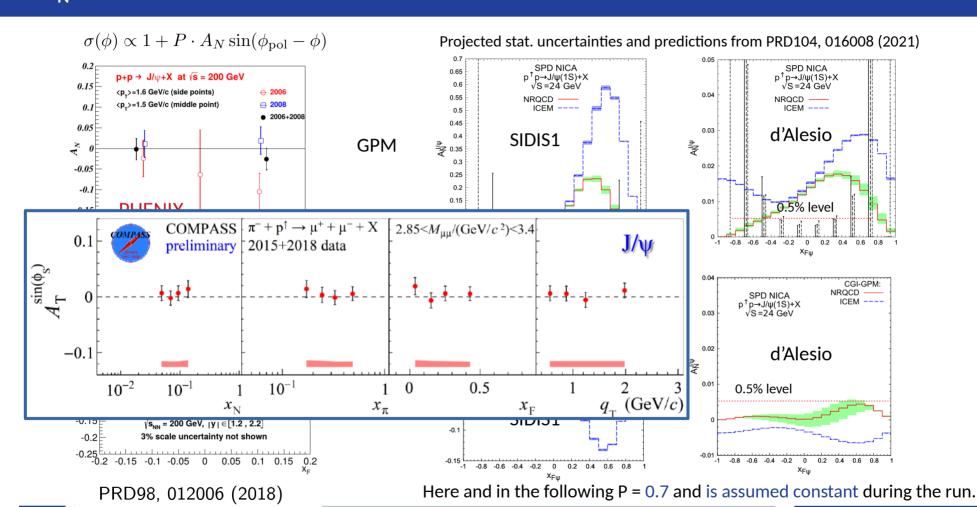
- High statistics, wide kinematic coverage
- Ability to measure also production properties of $\psi(2S)$, χ_{c1} and χ_{c2}
- Strategy is to obtain all possible measurements in the wide kinematic range
- Constrain both theoretical approaches and PDFs
- Our p_T are mostly below M_{J/ψ}
- NRQCD LDME → shape functions (Echevarria, 2019)


Inclusive J/ψ measurements

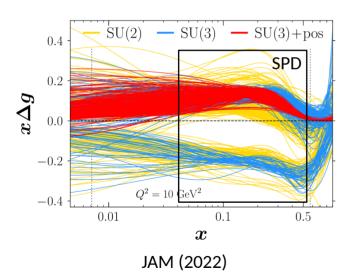

- Reconstruction efficiency: ~40%
- Statistics: ~ 4.5-5.0 M (selected events) per year
- Large background due to pion decays and muon misidentification in RS

Observables:

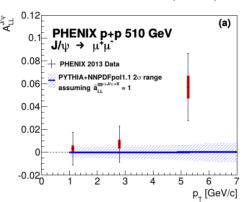
- cross-section, p_T-, x_F-dependencies
- polarization
- asymmetries

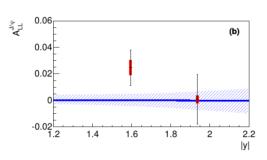


A_N for inclusive J/ ψ production

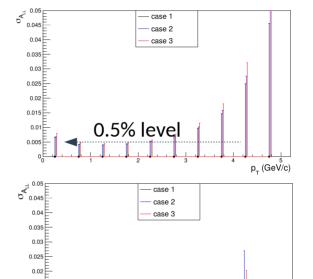

Here and in the following P = 0.7 and is assumed constant during the run.

A_N for inclusive J/ ψ production



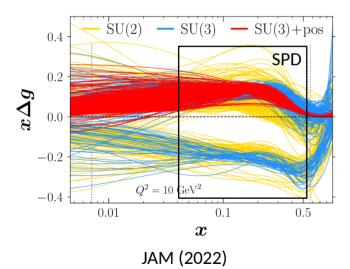

A_{II} for inclusive J/ψ production

$$A_{LL}^{J/\psi} = \frac{\Delta\sigma}{\sigma} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$
$$A_{LL}^{J/\psi} \approx \frac{\Delta g(x_1)}{g(x_1)} \otimes \frac{\Delta g(x_2)}{g(x_2)} \otimes \hat{a}_{LL}^{gg \to J/\psi + X}$$


PRD94 112008 (2016)

 $x_1 \sim 5x10^{-2}$ $x_2 \sim 2x10^{-3}$

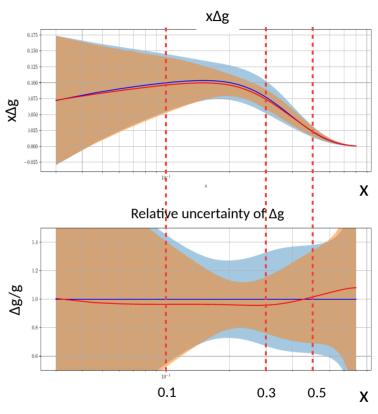
Projected statistical uncertainties for SPD

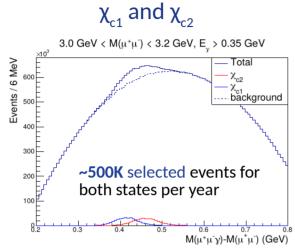


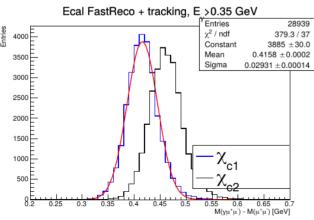
- |y|<2 is covered
- At SPD both $\Delta g(x_1)$ and $\Delta g(x_2)$ are expected to be close to the maximum
- A measurable A_{LL} of the order of 1-10% can be expected

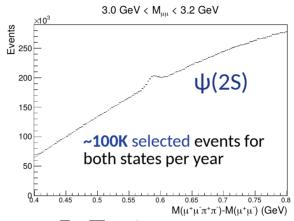
0.5% level

A₁₁ for inclusive J/ψ production (impact of SPD measurements)

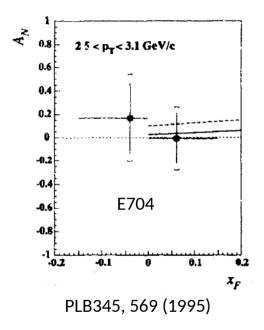

$$A_{LL}^{J/\psi} = \frac{\Delta\sigma}{\sigma} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$
$$A_{LL}^{J/\psi} \approx \frac{\Delta g(x_1)}{g(x_1)} \otimes \frac{\Delta g(x_2)}{g(x_2)} \otimes \hat{a}_{LL}^{gg \to J/\psi + X}$$

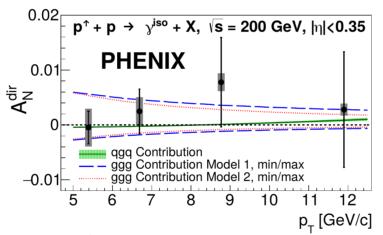

Impact of SPD data is estimated by


- prescribing stat. errors
 estimated for 1 year data taking
 at SPD with √s = 27 GeV
- Bayesian reweighing of MC replicas

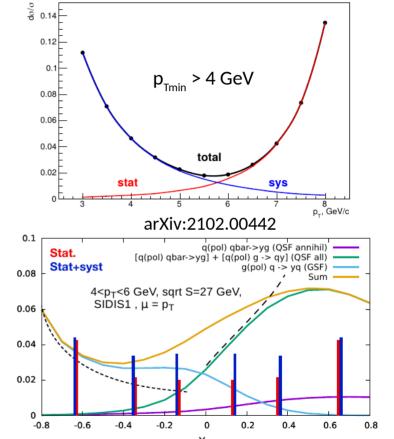

The relative uncertainty decreases by a factor of ~2 for x ~ 0.2-0.3.

On other measurements with charmonia



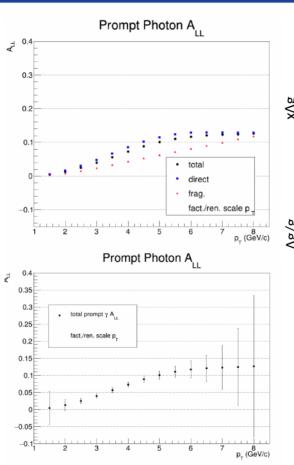


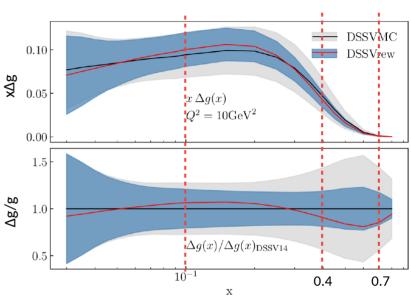
- $\eta_c \rightarrow p\overline{p}$, $\Lambda \overline{\Lambda}$, $\varphi \varphi$?
 - 500K selected events for η_c → p \overline{p}
 - huge background
- Double J/ψ production
 - 50-100 events/year for both J/ ψ dilepton decay modes
 - pT dependence complimentary to high energy experiments
- $J/\psi\gamma$: limited statistics and large background


Prompt photons: A_N

- Straightforward theoretical interpretation
- Sensitive to ∆g sign
- very challenging experimentally

Phys. Rev. Lett. 127, 162001

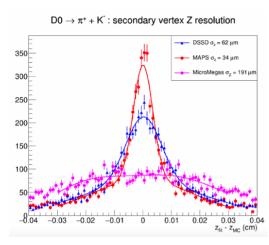

Predictions: Saleev, Shipilova, 2020

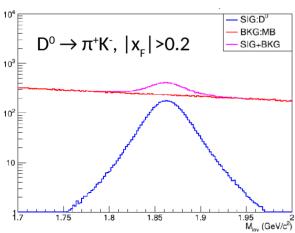

Prompt photons: A

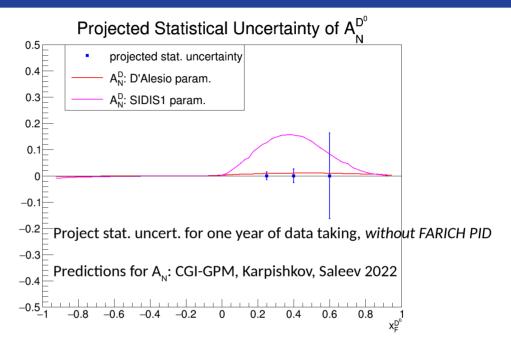
$$A_{LL}^{\gamma} pprox rac{\Delta g(x_1)}{g(x_1)} \otimes A_{1p}(x_2) \otimes \hat{a}_{LL}^{gq(\bar{q}) o \gamma q(\bar{q})} + (1 \leftrightarrow 2)$$

Impact of SPD data is estimated by

- generating "SPD data" according to current PDFs (NLO, NNPDF3.0, DSSV2014) - W. Vogelsong, 2021
- prescribing errors estimated for 1 year data taking at SPD with √s = 27 GeV
- Bayesian reweighing of MC replicas






Predictions with new "data" added (top) and ration of the uncertainties (bottom). Courtesy R. Sassot, I. Borsa, 2021.

Uncertainties are reduced by factor of 2 for 0.4 < x < 0.7

Measurements with D mesons

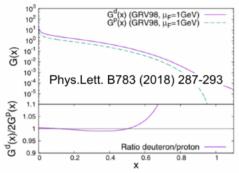
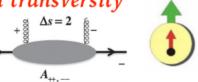
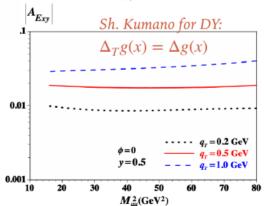
- The largest production cross-section (almost two orders of magnitude larger than for J/ψ)
- Small D-meson boost at our energies
- Interpretation requires c-quark FF
- Projected uncertainties shown for D⁰ only
- D meson pair production probe for Boer-Mulders function

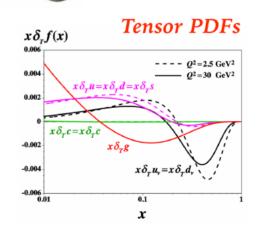
Deuteron gluon structure

 $\sigma(x_F, p_T)$, vector and tensor angular asymmetries

Nonbaryonic content of deuteron:

$$|6q\rangle = c_1 |NN\rangle + c_2 |\Delta\Delta\rangle + c_3 |CC\rangle$$


Fig. 6. Gluon PDF in the deuteron and in the nucleon.

Unpolarized gluons at high x:

Running strategy

Physics goal	Required time	Experimental conditions		
First stage				
Spin effects in <i>p-p</i> scattering	0.3 year	$p_{L,T}$ - $p_{L,T}$, \sqrt{s} < 7.5 GeV		
dibaryon resonanses				
Spin effects in <i>p-d</i> scattering,	0.3 year	d_{tensor} - p , \sqrt{s} < 7.5 GeV		
non-nucleonic structure of deuteron,				
\bar{p} yield				
Spin effects in <i>d-d</i> scattering	0.3 year	d_{tensor} - d_{tensor} , \sqrt{s} < 7.5 GeV		
hypernuclei				
Hyperon polarization, SRC,	together with MPD	ions up to Ca		
multiquarks				
	Second stage			
Gluon TMDs,	1 year	p_T - p_T , $\sqrt{s} = 27 \text{ GeV}$		
SSA for light hadrons				
TMD-factorization test, SSA,	1 year	p_T - p_T , 7 GeV < \sqrt{s} < 27 GeV		
charm production near threshold,		(scan)		
onset of deconfinment, \bar{p} yield				
Gluon helicity,	1 year	p_L - p_L , $\sqrt{s} = 27 \text{ GeV}$		
Gluon transversity,	1 year	d_{tensor} - d_{tensor} , $\sqrt{s_{NN}} = 13.5 \text{ GeV}$		
non-nucleonic structure of deuteron,		or/and d_{tensor} - p_T , $\sqrt{s_{NN}} = 19 \text{ GeV}$		
"Tensor porlarized" PDFs		,		

SPD CDR

SPD Collaboration

VIII SPD Collaboration meeting, Dubna, Novemeber 2024

Overall > 30 institutes, ~400 members https://spd.jinr.ru

MoU under prepartaion:

- NRC "Kurchatov Institute", Moscow (NRC KI)
- iThemba LABS, SA
- HSE University, Moscow
- Cairo University, Cairo

MoU has been signed with

- A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan
- NRC "Kurchatov Institute" PNPI. Gatchina
- Samara National Research University (Samara University), Samara
- Saint Petersburg Polytechnic University St. Petersburg
- Saint Petersburg State University, St. Petersburg
- Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow
- · Tomsk State University, Tomsk
- Belgorod State University, Belgorod
- Lebedev Physical Institute of RAS, Moscow
- Institute for Nuclear Research of the RAS, Moscow
- National Research Nuclear University MEPhl, Moscow
- Institute of Nuclear Physics (INP RK), Almaty
- Institute for Nuclear Problems of BSU, Minsk
- Budker Institute for Nuclear Physics, Novosibirsk
- Higher Institute of Technologies and Applied Sciences, Havana

SPD project timeline and tentative operating plan

2007: Idea of SPD project included to NICA activities at JINR

2014: SPD Lol approved by JINR PAC

2020: Completion of SPD CDR (arXiv:2102.00442v3)

2021: SPD Collaboration is established, preparation of TDR is started

Jan 2023: 1-st version of SPD TDR presented JINR PAC

Jun 2024: DAC recommended to approve the updated version of TDR (arXiv:2404.08317)

The first phase of the SPD project is included into JINR's 7 year topical plan (2024-2030)

Summary

- The SPD experiment is a comprehensive facility to study polarized and unpolarized gluon content of proton and deuteron at high x in p-p and d-d collisions with √s up to 27 GeV. The detector is optimized for three complementary probes: charmonia production, prompt photons, and D-meson production.
- SPD can contribute to:
 - gluon TMD (Sivers and Boer-Mulders)
 - gluon helicity PDF
 - gluon transversity in deuteron
 - unpolarized gluon PDFs of proton and deuteron
 - **–** ...
- The SPD Collaboration is active and growing.
- Apart from that, the SPD physics program covers large variety of different aspects of QCD during the initial and final stages of the experiment.
- The physical program of SPD experiment with respect to nucleon gluon content is complementary to those of experiments at RHIC, EIC, and proposed fixed target program at LHC (AFTER, LHC-Spin) and EicC.
- We are extremely interested in new people (especially students) to be involved physics simulation, development of reconstruction algorithms, software development!

spd.jinr.ru