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ABSTRACT

In the end-cap region of the SPD detector complex, particle identification will be provided by a
Focusing Aerogel RICH detector (FARICH). FARICH’s primary function is to separate pions and
kaons in final open charmonia states (momenta below 5 GeV/c). The optimization of detector pa-
rameters, as well as a free-running (triggerless) data acquisition pipeline to be employed in the
SPD necessitate a fast and robust method of event reconstruction. In this work, we employ a Con-
volutional Neural Network (CNN) for FARICH particle identification. The CNN model achieves
a superior separation between pions and kaons compared with traditional approaches. Unlike al-
gorithmic methods, an end-to-end CNN model is able to process a full 2-dimensional detector
response and skip the intermediate step of computing particle velocity, solving the particle classi-
fication task directly.
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ABSTRACT

Jnst yaydieHus uaeHTA()UKAIIIHA YaCTHIL B TOPLIEBOM peruoHe ycraHoBku SPD Oyzner ycTaHOBIeH
netexktop Focusing Aerogel RICH (DAPUY). Ocuoras 3apaua PAPUY coctouT B pazaeneHun
MMHOHOB U KAOHOB M3 3aBEPIIAIONTUX COCTOSHUN YapMOHHs (MMITYAsCH 10 5 ['9B/c). 3amaun pas-
paboTKU IETEKTOpa, a TakK ke OeCTPUTTEPHBINA peXUM paboThl CUCTEMBI COOpa TaHHBIX TPEOYIOT
co3/laHusi OBICTPOTO M HAJIEKHOTO METO/a PEKOHCTPYKUMU COOBITUN. B maHHON paboTe aBTOPHI
MPUMEHSIOT 1715 3a7a4n uaeHTudukanuu yactul B ®APUY ceeprounsie Heliponnsie cetu (CNN).
CBepTouHas MOZIEb JEMOHCTPUPYET 00Jiee BHICOKOE KaueCTBO Pa3J/ieleHHs IMOHOB U KAOHOB 10
CPaBHEHHUIO C aJITOPUTMUYECKUMU MO/X0aMu. B oTinnune oT HUX, CBEpTOYHAs CETh, OOydaeMas
B pEXHMMeE MOJIHON aBTOHOMHOCTH (OT OJTHOTO KOHIIa J0 JPYroro), MojyyaeT Ha BXOJ JIByMEpHbIE
JTAaHHBIE U TIPOMYCKAET MPOMEKYTOUHBIN 3Tal BHIYUCICHHS CKOPOCTH YaCTHUIIbI, YTO TTO3BOJISIET Ha-
NPSAMYIO pelaTh 3a1a4dy Kiaccu(puKauy YacTHII.

Keywords: NICA SPD, FARICH, machine learning, particle identification, detector recon-
struction
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Chapter 1
Introduction

The Spin Physics Detector (SPD) is a universal detector proposed by the SPD collaboration at
the Nuclotron-based Ion Collider fAcility (NICA) to study the Drell-Yan (DY) processes, J/¥
production processes, elastic reactions, spin effects in one and two hadron production processes,
polarization effects in heavy ion collisions, and more (Fig. [L.1], left) [29]. The SPD is a medium
energy experiment, offering unique possibilities of beam operation and bridging the gap between
the low-energy measurements, e.g. ANKE-COSY [22] and high-energy measurements, such as
Relativistic Heavy Ton Collider [23]. Several unusual design characteristics arise from the unique
goals of the project. A high luminosity up to 10?2 cm—2s~! and a free-flowing (triggerless) running
mode require novel approaches to the data acquisition [[I]].

The experimental high-energy physics (HEP) objectives require searching for rare signals
in background dominated environments. Machine learning techniques can extract high-level rep-
resentations from the input data and model complex relations while providing excellent scalability
and ease of parallelization. Machine learning approaches are state-of-the-art across a diversity of
HEP problems [3].

Reliable particle identification (PID) is a crucial component of modern HEP experiments.
Originally, a Time-of-Flight (ToF) detector was exclusively considered for 7/K/p separation in the
SPD experiment [29]. Recently, the addition of an aerogel counter in the end-cap region was pro-
posed to improve 7/K-separation [[13, 20]. This opened unique opportunities for machine learning
applications as well. Machine learning has already been successfully applied to calibration and
reconstruction of Cherenkov detectors [[15].

Our thesis focuses on leveraging machine learning techniques to develop an end-to-end
FARICH reconstruction model. We show that our model outperforms alternative multi-stage ap-
proaches, both algorithmic and machine learning based.

Figure 1.1: Left to right: FARICH in the SPD experiment [20], aerogel detector layout [8].



Chapter 2
Literature Review

Many of the machine learning approaches developed in the recent years have been incorporated in
the HEP data processing. The SPD project considers utilizing machine learning for trigger system
and event reconstruction in several stages of the data acquisition pipeline and in the data processing
facility. Fast tracking is instrumental to the trigger system at the SPD. There is a rich history of
successful applications of machine learning for these tasks. For example, boosted decision trees
were implemented in FPGIs as a level-1 trigger system at the CMS experiment [2]. GEM tracking
performance was substantially improved with neural networks [6, 24].

Computer simulations are one of the crucial components of HEP analysis. They provide
a detailed theoretical reference for understanding the experimental data, against which models of
both known and “new” physics can be tested. Nowadays, various surrogate models have been ex-
tensively adopted for this task, commonly Generative Adversarial Networks (GANSs), e.g. in LHCb
experiment electromagnetic calorimeter [26, 27, 11] and Belle II pixel vertex detector simulations
[B1]. Variational Autoencoders (VAEs) can also be used [30]. GANs with an auxiliary regressor
help improve the reproducibility of marginal metrics [28]. GANs have been successfully applied
for DIRC Cherenkov detector simulation in LHCb [|14].

2.1 RICH PID

Common RICH particle identification (PID) methods are based on calculating various statistics
of the Cherenkov angle distribution. RICH PID in the LHCb [25] and AMS [[7] experiments was
performed by discriminating mass hypotheses via a maximum likelihood estimation. Prior particle
track info and detector response were used to determine Cherenkov angles for each photon hit and
compute PID statistics. Belle II experiment adopted an approximation of the Cherenkov angle
distribution with a Gaussian [[19].

Recently, machine learning approaches have seen some use in the task of RICH reconstruc-
tion. Notably, DeepRICH used VAE to extract features from a raw detector output and a convo-
lutional neural network (CNN) to classify the latent representations [|17]. The detector of choice
for DeepRICH was FastDIRC, an open source simulation package of internal reflection Cherenkov
detectors. DeepRICH combined reconstruction and simulation in a single framework and benefited
from bypassing low-level details of the system, however, it was not trained in an end-to-end fashion
and did not use the hit time information.

The following work, DeeperRICH, expanded the method to PID of pions and kaons in the
GlueX experiment at JLab [16]. In a DIRC detector, no distinct rings are observed as Cherenkov
photons are internally reflected; an intricate hit pattern of several curved traces is formed instead.
Specifics of the DIRC detector setup also include the use of a non-rectangular detector matrix. It
is split into identical square patches, making it uniquely suitable for a Vision Transformer (ViT)
model. The authors replaced the DeepRICH CNN with a Swin variant of vision transformer. It
should be noted however that Swin is a notoriously computationally heavy model. DeeperRICH
required multiple days of training on a cluster of A30 GPUs, moreover, its slow inference made
real time processing challenging.

Recently, a machine learning based Gaussian mixture model (GMM) for predicting a prob-



ability density function of an algorithmic PID classifier at LHCb was explored [[18]. Instead of
relying only on simulations, the authors used real calibration data to better predict PID probabili-
ties in complex feature spaces. A fully connected neural network was trained to model the depen-
dence of GMM parameters on the set of experimental features. This approach allowed the model to
smoothly interpolate over the feature space and account for non-trivial correlations between input
features.

2.2 Current Analogous Methods

Moving on to the research efforts directly related to ours, a neural network for particle identifi-
cation at the newly upgraded LHCb RICH detector was devised [9]. LHCb RICH is a traditional
mirror-focusing detector with tractable geometry that produces full Cherenkov rings. The proposed
method of obtaining images for CNN input encompassed a single polar transformation of a fixed
radius range around each Cherenkov ring center. Similarly to our method, the center was defined
as an intersection of the extrapolated particle track with the photon detection plane.

The polar transformation unwound the rings into vertical lines in 2d images. These images
were then fed into a custom CNN that was trained in an end-to-end fashion to perform multi-class
classification over 6 particle types. Cross entropy loss was used as a training objective. The CNN
architecture used dropout for regularization and included 3 convolutional layers with increasing
numbers of filters, as well as 2 final fully connected layers. The model was trained on a simulated
dataset.

The proposed method was fine-tuned for the LHCb RICH detector. The detector only cap-
tures particles travelling at shallow angles of incidence, therefore, the resulting Cherenkov ellipses
can not be as eccentric as in the SPD FARICH. The authors could skip implementing the full recon-
struction of Cherenkov angles required for correct processing of highly eccentric rings and limit
themselves to a simple non-parametric polar transformation. For similar reasons, they did not have
to account for refraction of Cherenkov photons exiting the aerogel radiator. Accuracy was used as
a metric during training as the simulated dataset was properly balanced.

2.3 Relation to Current State of the Art

Our methods build upon the contemporary machine learning based RICH PID approaches by uti-
lizing end-to-end training for the classification of particle types. Similarly, our model trains on
simulated physics data. These industry standard simulations are indispensable in HEP research, as
they supply an extremely detailed and physics grounded description of the processes happening in
the detector. The simulation software packages are built from the first principles, thus, provided the
simulated detector configuration is well-matched with its physical implementation, the processes
can be simulated as close to the real ones as possible [5].

Until the detector complex is fully realized in hardware, real data can be scarce. Never-
theless, the detector cannot be built without an already working data processing system, hence,
despite its flaws, the simulated data provides a solid foundation for the development of reconstruc-
tion methods and, crucially, guides the process of hardware implementation towards matching the
simulated setup more closely.

The methods described in this thesis markedly improve upon the current state of the art by
implementing various elaborate Cherenkov ring processing algorithms with analytic corrections
prior to feeding it to the neural network, adopting a modern residually connected CNN, employing
sophisticated machine learning tricks to optimize the training, particularly for imbalanced datasets,
monitoring advanced classification metrics during training, such as areas under various types of
ROC curves and thresholded metrics, and comparing neural networks with several algorithmic



baselines, as well as with non end-to-end trained models. Additionally, we perform a comprehen-
sive ablation study to dissect the real benefits of neural networks and other types of changes.

As our setup did not involve an internally reflected Cherenkov detector with an irregular
SiPM matrix and considering the extremely high data rate of the SPD experiment, a heavy ViT
model was deemed impractical, although it should definitely be considered for future research.

2.4 NICA SPD Details

The aerogel counter in the SPD project is expected to provide m/K-separation in the momenta range
below 5 GeV/c, necessitating a focusing acrogel (FARICH) [[13]. A robust reconstruction of events
in FARICH is required, i.e. identifying the correspondence between tracks supplied by the online
trigger and Cherenkov rings.

There are 2 possible cases: the use of silicon photo-multipliers (SiPMs) or microchannel
plate detectors (MCPs). The SPD is characterized by long bunches up to 76 ns [13]. In the first
case, this results in a significant background rate which should be countered with some kind of
software algorithm, possibly employing machine learning techniques.

In the second case, the problem of superimposed Cherenkov rings arises. It is expected that
the geometric coordinates of the Cherenkov cone vertices will be known with sufficient precision.
It follows that the error will be localized in the time domain.

Unfortunately, the application of hardware reconstruction is not possible because of the
tracking system delay. A purely software-based approach would need to find a matching between
rings, tracks and vertices. It is argued that machine learning may help to speed up computations
compared with a brute-force approach.



Chapter 3
Problem Statement

Ring-imaging Cherenkov (RICH) detectors use Cherenkov photons to measure the velocity of an
elementary particle. Whenever a particle travels at a velocity higher than the speed of light in the
medium, a Cherenkov radiation is emitted. Cherenkov photons form a cone that imprints a roughly
elliptically shaped signal on a flat detector surface. A well-known relation between the velocity of
a particle and the Cherenkov angle is as follows:

f=——, G.1)
ncosf,
where [ denotes the particle velocity in units of ¢, n is the refractive index of the medium, and 6.
is the Cherenkov angle.

The main components of a RICH detector are radiator and photomultiplier (PM) array.
Cherenkov cone vertex is not static and traverses the full thickness of the radiator during the passage
of the particle, resulting in a smudged Cherenkov ring. Proximity-focusing (proximity-imaging,
non-focusing) aerogel detectors compensate for this during the reconstruction stage [[7]. However,
in case a high resolution is desired, Cherenkov photons must be focused to reduce the signal vari-
ance. Focusing mirrors can be employed to reflect the photons back to the PM array, however,
they are difficult to install, expensive to maintain, and require a large space that is at a premium in
colliding beams experiments [4].

Aerogel has seen extensive use as a radiator material for as soon as high quality samples
appeared on the market. The main idea behind the Focusing Aerogel RICH (FARICH) detector is
stacking several layers of aerogel with increasing refractive index in the radiator (Fig. [L.1, right).
The focusing happens inside the radiator, eliminating the need for mirrors, drastically reducing the
mechanical complexity [[19].

3.1 FARICH Reconstruction

In the task of FARICH reconstruction, one is generally provided with the following input:

* Track parameters: x,, y,, 2, — coordinates of the particle upon entering the aerogel, 6, ¢, —
polar angle and azimuth of the direction of travel,

 Photon hits: ., y., z. — coordinates of triggered pixels in the photosensitive matrix.

SiPMs used in the matrix can be triggered by Cherenkov photons, as well as background radiation
and intrinsic noise.

The end goal of PID is to identify the most probable particle, however, it is not possible
without knowing the momentum p. Therefore, one should extract as much useful statistics from
the data as possible, such that when combined with an estimated momentum value from a separate
detector, the particle is robustly identified. This can be formally written as an optimization problem

E(x y)~a(xy) [Q(fiw(X), )] — max,
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where fy is a classifier model with parameters 1/, X is the input described above including mo-
mentum, y is a particle class, ¢ is a distribution of detector responses, and () is a classification
metric, e.g. accuracy or Fi-score. In the context of HEP, individual probabilities of misidentifica-
tion or even full confusion matrices are usually of interest.

A simple example of fy is to estimate the velocity 5 and compute a mass hypothesis:

Estimator B can be either algorithmic or learnable. In the former case, 6. is explicitly calculated
for each photon hit. A statistic 6. can then be derived from this sample. Model parameters IV, e.g.
0. threshold, are hyperparameters and not learnable in this case. In the latter case, a neural network
or other model may be trained to predict B, ultimately solving a regression task. The momentum p
is used in the next stage to calculate the rest mass.

3.2 End-to-End Optimization Proposal

We propose a different way of constructing fy, by encapsulating all stages of data processing in a
single learnable function that has access to FARICH, tracking and momentum data. The potential
benefit of this is two-fold.

Firstly, the /3 distribution is inherently imbalanced as a consequence of conservation of mo-
mentum. Lighter particles, such as electrons, obtain ultra-relativistic speeds and concentrate near
B = 1, while heavier particles come in a broader range of lower velocities, making the regression
task harder to optimize.

Secondly, during training an error in the intermediate value of B is minimized. A proxy
objective then implicitly influences the target classification metric (). This may lead to issues,
for example, improving margins on [ in cases where the particle type can be predicted with high
certainty does not improve PID performance. The training should instead focus on hard events
where classification typically fails.

This work investigates the potential benefits of an end-to-end model over a multi-stage
model. For this purpose, we develop both types of models and test them. We consider simple
algorithmic reconstruction methods, a neural network regressor for (3, and various end-to-end neu-
ral networks. The models are evaluated on synthetic datasets and tested against several baselines
to find the best performing approach which could be used as a basis for future development of
FARICH reconstruction.

11



Chapter 4
Methods

Our first baseline was based on the RICH reconstruction from CBM experiment at FAIR [21]]. The
algorithm utilized Hough transform for ellipses, more precisely the Taubin method [[12]. The Hough
transform estimated parameters of the ellipse, such as a, b — semi-axes, x, y — center coordinates,
and ¢ — angle of rotation (Fig. §.1). These parameters were then used to calculate 6, (B.1)).

It is important to note that the baseline was fixed, so we only had access to the precomputed
0. values. The baseline did not account for refraction in the acrogel. More importantly, it did not
have access to information from the straw tracker, such as ¢, and ¢,

Similarly to our own algorithmic methods, the second fixed baseline used Cherenkov angle

distribution (§.1):

0.(pc|B,m, 0;) = arccos (%) +arccos (n(1 — (non,)?)) +(n0n7)\/1 —n2(1 — (non,)?) (4.1)
A regression fit was computed over real Cherenkov hits with this formulae. The method accounted
for refraction and utilized tracking data. It was used in the second dataset, however, its imple-
mentation contained critical errors and produced garbage output for 50% of the data. We removed
cases where the algorithm malfunctioned from the test set for the sake of comparison. The reader
is advised to keep in mind that production baseline was evaluated on a subset of the test sample
and exercise caution when drawing conclusions in relation to other baselines.

4.1 Refraction Correction

Cherenkov photons are refracted upon exiting the radiator (Fig. #.2)), making a direct computation
of 6. from x., y. inaccurate. One possible way to account for this is to reverse the refraction and
obtain initial ¢, values.

Let a be the angle of incidence, 5 — the angle of reflection, n — refractive index of the
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Figure 4.1: RICH Hough transform baseline [21].
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aerogel. Then

{ dtan3 + htana = r 42)

nsina = sin 8

One can find o if 3 is known using (#.2)), for example, using a first order approximation or a fixed-
point iteration. In the first order approximation § = o + Aa, Aa < «, h < d. Then

ar~f—(n—1)tan

The fixed-point iteration step is

d 2
sin = 1 _—
Q1 " + (r—htanak>

sinag = 1/+/12 + (d + h)2.

Fixed point iteration achieves a marginally better approximation. As a result of applying correction,
0. by azimuth ¢, distribution becomes more uniform (Fig. §.3).
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Figure 4.3: Left — Cherenkov angles before correction, right — after.
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Figure 4.4: (3 distribution in the data. The sample is heavily skewed because of the relativistic
electrons produced in collisions.

4.2 Algorithmic Methods

6. values can be used to estimate 6... Several approaches are possible here. 6. can be setto a simple
arithmetic mean. This is equivalent to [, optimization in the regression fit of a production baseline.
Median or [; method computes the median of 6, after correction. Maximum likelihood (MLE) finds
an approximate mode of the distribution using a sliding window approach. We implemented the
latter 2 approaches. An arithmetic mean was supplied by a production baseline.

4.3 Machine Learning Models

Algorithmic methods output 6. that can be converted to particle rest mass using momentum p from
the straw tracker. In machine learning terms, these are regression models. However, the goal of
RICH detector is separating different particle types. In particular, FARICH aims to improve 7 /K -
separation. This can be stated as a classification problem.

Unlike algorithmic methods, end-to-end models are able to skip the intermediate step of
computing velocity 3. The regression task is not well suited for a machine learning model because
of the significant value imbalance stemming from the high velocities of light particles, e.g. electrons
(Fig. .4, left). A mitigation in the form of compensating 3 with Lorenz factor ~ can be applied,
however, the distribution will still be far from a properly balanced one (Fig. #.4, right).

Taking this into account, we propose a neural classifier that combines hit coordinates x.., y..,
tracking info x,, yp, 2p, 0, ¢, and momentum p in a single architecture. Several approaches are

Momentum
Loss for
Classification

}o' LY i

[ ]
e o [—> /" .. Neural Network PID
)

s ° : ¢

Figure 4.5: Extra Channel NN architecture.
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possible: either providing p as an extra input channel / pathway in the neural network, or employing
it in the input data normalization. For the sake of completeness, we implemented both methods.

In the first case, the normalized momentum value is supplied as an additional input channel,
hence the name Extra Channel NN. Hit coordinates x.,y. are geometrically transformed into a
circular response using the particle track information (Fig. §.5). This way, the network learns a
simpler task of extracting the radius of a circle instead of dealing with diverse elliptical responses
of various orientations and eccentricities. The model is also supplied with 2 extra channels of
Fourier features computed from ¢, values.

The second model, Renormalize NN, deals with momentum by transforming the input circle
even further. The non-linear dependence on p can be disentangled and removed prior to applying
classifier model. The following relation stands:

1
cos@c:E\/m%/pQ—l—l, 4.3)
where my is the rest mass.

Renormalize NN first corrects for refraction, then uses (4.3) with N mass probes for each
of the particle types in the data to transform 6. into a S-independent space. The input is then split
into N channels. Coordinates ., y. are recomputed using corresponding mass probes (Fig. §.6).

It can be easily seen that multiplying cos 6, by an inverse of (#.3) results in cosf, = 1 in
case my is the true rest mass of the particle, and cos . # 1 otherwise. This way, a Cherenkov
ring of a fixed size is placed in the channel corresponding to a correct particle type, while rings of
different sizes are placed in other channels.

In theory, by thresholding around a known fixed radius, all channels besides the correct one
can be cleared of the hits entirely. In practice, the threshold can not be set too small because of
the finite thickness of the Cherenkov ring. We tune the threshold value such that it eliminates at
least some of the hits from the wrong probes and does not remove too much relevant hits from the
correct mass probe.

Loss for

Regression Momentum
/" * v
[ ]
H . Neural Network Beta | o
: (Velocity)
. ...

Figure 4.7: Beta NN architecture.
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The described normalization approach may relieve the model from implicitly learning the
non-linear 8 <> p relationship, enabling a more efficient use of the its computational power. Poten-
tial drawbacks include the loss of information during thresholding and the introduction of additional
granularity in the momentum value p.

Additionally, we implement a 3-outputting neural regressor Beta NN (Fig. B.7). It is a
direct analog of algorithmic methods with the only difference being the use of a neural backbone to
perform B computation. The model learns to predict 3 and then uses (B.1)) to classify the particle.
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Chapter 5
Numerical Experiments

Two distinct datasets were utilized in the numerical experiments: Balanced and Production. Both
were produced in the SPDRoot particle passage simulation toolkit [[13]. The data samples contained
5366595 and 27871018 simulated events respectively, consisted solely of Cherenkov photons, and
did not include background hits and scattered photons. High quality photomultipliers are expected
in the NICA SPD FARICH, so the real background rate should be fairly low.

Balanced dataset was well-balanced with 5 particles present: e, =, 7", K+, and p. Beam
collisions were not simulated, so the particles were assigned a random momentum drawn from a
uniform distribution.

Balanced dataset contained events with low /3 values that did not produce any Cherenkov
photons (Fig. #.4). There were also events with 6, > m/2 meaning particles were moving back-
wards through the detector. We excluded these events from our analysis because they led to a
breakdown of all reconstruction algorithms. In total, such events accounted for a 1.7% of the
dataset. Production dataset did not exhibit such issues, but still contained rare events with zero
proper Cherenkov photons as they were all scattered.

Production dataset used a realistic FARICH geometry with 2 end-cap detectors. Beam col-
lisions were properly simulated resulting in realistic distributions of parameters (Fig. 5.1]). Because
of the significant class imbalance (7/ K ratio ~ 20/1), we focused our efforts on 7/ K separation
only. To counter class imbalance, we enabled either a class-aware downsampling or a positive
weighting of the loss function. A control run without applying a balancing method was also per-
formed for each model. We compared all 3 approaches by calculating AUROC on the validation
set and used the best performing checkpoint for the test set evaluation.

We reserved 600000 events for testing, 5000 for validation, and used the remaining for
model training and calibration. The input format for NN models was a C' x 32 x 32 tensor, con-
taining either a momentum value, a Cherenkov ring and its Fourier features or mass probes for
corresponding particles. An adapted ResNet-18 architecture was used as a classifier and regressor
with changes to the input convolution, max pooling and a classifier head / sigmoid activation to

Figure 5.1: FARICH configurations in the simulated data. Left — Balanced, right — Production.
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accommodate for input and output formats.

All models were trained on ~ 3100000 events with Adam optimizer, cosine annealing
scheduler, a learning rate of 5 - 10~* and a batch size of 128. Cross entropy loss was optimized for
classification models, while Beta NN was trained with MSE loss. Multiclass accuracy, precision,
recall and AUROC were monitored during training. For Beta NN, RMSE and R2 were also logged.

In total, 2 end-to-end models and 4 5-outputting baselines were considered: Extra Channel
NN, Renormalize NN, learnable Beta NN and algorithmic Median, MLE and Hough / Fit baselines.

18



Chapter 6
Results and Discussion

6.1 Regression Metrics

We used regression metrics to tune hyperparameters of the algorithmic methods. A sample stan-
dard deviation o3 was our main target metric. We noticed that the refraction correction method,
while improving the variance, introduced a systematic bias in the predictions. Fortunately, the bias
could be approximated by a linear transformation quite well, and thus easily corrected. Systematic
correction parameters were computed by making a single pass over a subset of the training data
and then applied to predictions on a test set.

This improved o3 by more than 40% for Median on Balanced dataset. An improvement of
10% was achieved on Production dataset. MLE estimate also improved, however, Hough baseline
standard deviation increased. A possible reason for this can be found in the supplementary material
(Appendix A: Ablation Studyl), where we demonstrate the improvement of classification metrics
after correction. To this end, we used corrected values in the subsequent analysis.

Among our -outputting baselines, Beta NN showcased the best variance o, although
the advantage over the second best performing Median baseline was small on Balanced dataset
(Fig. b.1,, top). The wavy shape of the plot indicates a bias variance trade off encountered in the
training process, making the model questionable from the physical validity standpoint.

The advantage was more pronounced on Production dataset (Fig. 6.1, bottom). In that case,
the model remained physically sound across the whole 5 range. MLE and Hough / Fit baseline
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Figure 6.1: 2d correlation plots for S-outputting models. Top — Balanced, bottom — Production
dataset.
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Figure 6.2: Predicted mass distribution, color coded by true classes.

performed less favorably (Table [.1]).

An interesting artifact can be observed in the Beta NN 2d correlation plot on Production
dataset. The horizontal line corresponds to events with no proper Cherenkov photons registered.
The model learned to guess an average [ value in such cases. In the future, this behavior can be
made more explicit by adding an additional class for the unknown particle type.

6.2 Classification Metrics

We computed rest masses were from the predictions of S-outputting models and used statistical
hypotheses to determine particle types. The hypotheses were based on the proximities of predicted
masses to true particle rest masses. For end-to-end models, NN output after softmax supplied
probabilities and predicted classes directly.

We considered the following classification metrics: area under receiver operating charac-
teristic curve (AUROC), precision at a fixed recall value (Purity @ Efficiency = 0.99), average
precision or AUC-PR (AP), and 5 class accuracy for Balanced data.

End-to-end NN models held a significant advantage over all 3-based approaches, both the
best algorithmic model and Beta NN (Table b.1)). Median demonstrated the best performance
among all algorithmic methods, nevertheless, it was outperformed by NN models. Extra Chan-
nel NN showed the best overall performance on both datasets (Table .2).

The 5 class accuracy of all methods, including NN, was not very high because lower mass
particles were not separated well (Fig. 6.2). This is not an indicator of a bad performance. The
minimal amount of particle band overlap is determined by the detector configuration, thus limiting
the accuracy even in the case of an ideal theoretical algorithm (Fig. 6.3). The bands possess a

Table 6.1: Test metrics for Balanced dataset. AP stands for Average Precision (AUC-PR). For 7/ K
metrics, a subset of the test data containing only pions and kaons was taken.

’ Method \ 5 class Accuracy \ 7, K Purity@Efticiency = 0.99 \ m, K AP \ o’ ‘
Extra Channel NN 0.68 0.946 0.998 N/A
Renormalize NN 0.67 0.946 0.998 N/A
Beta NN 0.66 0.945 0.992 | 0.0007
Median 0.65 0.827 0.985 | 0.0009
MLE 0.53 0.467 0.828 | 0.0020
Hough 0.50 0.461 0.719 | 0.0062
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Table 6.2: Test metrics for Production dataset. AP stands for Average Precision (AUC-PR).

’ Method \ AUROC \ Purity@Efticiency = 0.99 \ AP \ ot ‘
Extra Channel NN | 0.9999 0.93 0.998 | N/A
Renormalize NN 0.9997 0.81 0.994 | N/A
Beta NN 0.9990 0.91 0.937 | 0.0016
Median 0.986 0.05 0.867 | 0.0030
MLE 0.977 0.05 0.713 | 0.0038
Baseline 0.917 0.05 0.886 | 0.0054

finite spread, making particles physically indistinguishable at higher momenta. We observe this in
practice by plotting classification metrics binned by momentum (Appendix B: Additional Figures).

The primary goal was 7/ K -separation, where the overlap is not as severe as seen in muons
and electrons, reducing the impact of total accuracy. In particular, for an important momentum
range of 5.0 = 0.5 GeV/c and an efficiency fixed at 0.99, the best NN model improved 7/ K purity
by almost 20% over the best algorithmic method.

Notably, on Balanced dataset Extra Channel and Renormalize NN differed in multiclass ac-
curacy only. They produced identical outputs on 7/ K subset. These NNs received vastly different
inputs, indicating that their performance is close to optimal for this particular dataset.

6.3 Discussion

Our S-outputing methods surpassed the baselines because we carefully accounted for refraction and
introduced strict physical thresholds on 6. values, resulting in sharper 3 distributions. Hough trans-
form’s disadvantage was its high dimensionality in the case of ellipses (5 parameters) in addition
to the dismissal of tracking information. While the transform worked somewhat reliably for simple
circles, it faced challenges when locating ellipses. Production baseline was more advanced, how-
ever, in that case all 3 algorithmic methods suffered from poor performance at classifier thresholds
corresponding to high efficiencies (Table [6.2).

Beta NN performance was not quantitatively different from algorithmic methods on Bal-
anced dataset. Qualitatively, it exhibited unfavorable deviations from proper physics. Beta NN
performed well on Production data because it processed empty events more efficiently. Algorith-
mic methods outputted S = 1 in such cases. Thus far, an argument can be made in favor of our
initial hypothesis that most of the quality uplift in NNs is explained by the end-to-end training.

Median predicted bands, 613633 samples

Predicted B

Momentum [GeV/c] Momentum [GeV/c]

Figure 6.3: Predicted bands on Balanced dataset. Some of the overlap in the bands stems from
inherent physical limitations and can never be completely removed, making 100% accurate classi-
fication impossible.
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Interestingly, Purity @ Efficiency of Beta NN was higher than that of an end-to-end Renor-
malize NN. All the integral metrics were lower however, hinting at a potential issue with Renor-
malize NN in a particular narrow segment of the precision recall curve. This may be investigated
further.

Summing up, the excellent quality of end-to-end NN models can be reasonably attributed
to their training pipeline. The same NN architecture that was not trained in an end-to-end fashion
did not demonstrate significant advantages over algorithmic methods, despite having access to
additional spatial information that was not available to algorithmic approaches. This underlines
the benefits of optimizing a classification objective rather than an intermediate regression metric.

While neural networks demonstrated impressive capabilities, the use of ResNet-18 CNN in
the production setting of the SPD data processing facility is challenging. In the future work, one
may optimize the architecture with various techniques such as knowledge distillation, pruning, and
quantization. A multi layer perceptron (MLP) may serve as a target architecture as it is more suited
for running on CPUs.
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Chapter 7
Conclusions

ML-based approaches have gained attention of physicists across many different research fields. In
particular, applications in particle and nuclear physics, ranging from experiment design to fast ex-
perimental data processing, offer great prospects for enabling new scientific discoveries [10]. Deep
learning applications have been recently explored in the context of fast and reliable reconstruction
and simulation of RICH detectors. In particular, neural networks designed for fast reconstruction
offer higher accuracy and robustness compared to traditional methods.

The FARICH detector deployment at NICA SPD gives rise to a range of essential problems:
fast online noise rejection, offline reconstruction, fast simulation, and more. These tasks exhibit a
high potential for ML applications. ML proved useful across a wide range of HEP applications, in
particular, RICH detectors, hence, applying ML to FARICH poses a great opportunity.

In this work, we developed and tested single ring reconstruction methods for NICA SPD
FARICH. The initial results of applying ML on Balanced dataset were promising, with a lot of
useful implications and potential for future studies. They were published in Moscow University
Physics Bulletin journal. The journal is peer-reviewed, published in English by Springer and in-
dexed by Scopus and WoS. Production sample results were presented at IX SPD Collaboration
Meeting.

The logical next step would be to finalize the SPD reconstruction method into a production-
ready solution. This involves exporting the neural network code from Python environment to C++
and integrating it into the SPDRoot system. These steps were discussed at the recent SPD Collab-
oration Meeting.

Previously, FARICH was considered for SCTF project in Novosibirsk, Russia. Unfortu-
nately, the progress of FARICH deployment has slowed down quite seriously after the collider was
repurposed for a hard x-ray material science program. Recently, the prospect of collaborating on
FARICH with SCTF China facility has been discussed. Our colleagues show interest in our exper-
tise on the topic. This collaboration opens a world of possibilities to develop new reconstruction
and simulation methods.

Now that FARICH has been officially adopted for the second phase of NICA SPD experi-
ment, the applicability of our research is broader than ever. A substantial progress has already been
achieved, with prospects wide open for further research, new exciting developments and partner-
ships.
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Chapter 8
Author Contribution

Among the 4 co-authors of this work, the student’s contribution was the development and imple-
mentation of machine learning methods and baselines, data processing, numerical experiments,
model evaluation and analysis, as well as composing the results, presenting at conferences, writing
papers and reviewing the relevant literature.

Ivanov, A. contributed simulated datasets and 2 baselines: Hough transform (Balanced) and
Fit (Production).

Barnyakov, A. and Ratnikov, F. contributed the overall direction and supervision, guidance
in technical physics topics and final editing of the written works and conference talks.
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Chapter 9
List of publications

The student contributed the development of the main machine learning method and baselines to
all of the papers, with the exception of paper 1 which had 2 baselines provided by Ivanov, A. The
co-authors contributed the simulated Geant4 / SPDRoot datasets, important physics details for the
detector configuration and overall supervision.

Paper 1 presents the results obtained on Balanced dataset in the first year of MSc studies.
The production dataset results were reported at IX SPD Collaboration Meeting (2025 May 12-16).

Papers 2 and 3 are concerned with FARICH reconstruction and noise suppression for Super
c — 7 Factory experiment instead of NICA SPD. Nevertheless, they laid an important groundwork
for this thesis. However, the methods developed during the MSc studies are significantly novel.
They were not present in the previous BSc papers in any way, because the task of an end-to-end
particle identification was never examined.

1. Shipilov, F., Barnyakov, A., Ivanov, A., Ratnikov, F. Machine Learning for FARICH Re-
construction at NICA SPD. In Moscow University Physics Bulletin (2024), vol. 79, no. S2,
S906-S913.

2. Shipilov, F., Barnyakov, A., Bobrovnikov, V., Kononov, S., Ratnikov, F. What Machine
Learning Can Do for Focusing Aerogel Detectors. In EPJ Web of Conferences (2024), vol.
295, 09043.

3. Shipilov, F., Barnyakov, A., Bobrovnikov, V., Kononov, S., Ratnikov, F. What Machine
Learning Can Do for Focusing Aerogel Detectors. In Physics of Atomic Nuclei (2023), vol.
86, no. 5, 864—868.
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Appendix A: Ablation Study

We investigated the performance of our methods by removing both refraction and systematic cor-
rections. Initially, raw 6. values without refraction correction produced lower o3 compared with
corrected ones (Fig. P.1]). The advantage was consequently lost upon the application of a systematic
bias correction. Despite a better initial bias, the prediction variance was higher without refraction
correction.

This also explaines the decrease in quality after applying systematic correction to Hough
baseline. As Hough baseline does not account for refraction, it demonstrates better compliance
initially at the cost of a very high variance.

Next, we computed the mass distribution using Median values without the systematic cor-
rection. /K -separation suffered tremendously, with the false positive and negative rates in the
range of 50% and higher (Fig. .2, left).

The ablation study provided important evidence regarding the positive impact of our cor-
rections in achieving the reported quality.
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Figure 9.1: Balanced dataset 2d correlation for Median with and without systematic correction.
Refraction correction was not performed.
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Additionally, by far the most computationally expensive part of the pipeline was Cherenkov
angle computation and coordinate processing prior to feeding an image into a neural network (Fig.
0.2, right). Extra Channel NN did not suffer from this as severely, nevertheless, it also used an
expensive coordinate transformation in the Fourier features computation. We remedied this issue
by implementing data parallelism, achieving a speed-up largely proportional to the number of com-
putational nodes (up to 19x on 30 CPU cores). More efficient algorithms may be developed for a
faster inference.
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Appendix B: Additional Figures
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Figure 9.5: Detailed Production Extra Channel NN performance binned by momentum and 0,,.
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Figure 9.6: Detailed Production Beta NN performance binned by momentum and 6,,.
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Figure 9.7: Detailed Production Median performance binned by momentum and 6,,.
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