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Introduction: Role of Pilot Applications

e Provide a flexible mechanism for execution of computational tasks.

e Widely used in high-throughput computing (HTC) systems for scientific data
processing (ex. LHC computing).

e Issue: lack of unified abstraction and best practices leads to a variety of
implementations.



Core Components of Pilot Software

Pilot Manager: Launches

pilots (resource placeholder:

on computing resource;
Interfaces with SLURM,
HTCondor, etc.
Workload Manager:
Organizes task queue
(dependencies, priorities,
resource readiness).
Task Manager: Executes
tasks on pilot-reserved
resources; Manages task
lifecycle (launch, restart,
monitor, error handling).
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Functionality & Architecture

Functional Stages:

e Provisioning (Acquiring & deploying resources)
e Dispatching (Assigning tasks to pilots)
e Execution (Running tasks on resources)

Architectural Features:

e Multi-level scheduling
e Communication Models (Master-worker, Broker-oriented)
e Flexibility (integrates with various DCRs: clusters, grids, clouds)
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Definition:

Late binding is the process of assigning tasks to active pilots at the moment of
availability, unlike early binding, where tasks are tied to inactive pilots.

Benefits:

e Dynamic task allocation improves resource utilization efficiency.
e Reduces queue wait times, critical for high-performance systems.
e Enables high throughput (e.g., up to 1 million tasks per day for ATLAS).
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SPD Online Filter Pilot Software
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SPD Online Filter Pilot Software

Two separate queues for CPU - :’ueue p—p :’ueue
and GPU tasks. Repository

2. The Pilot consists of two
processes:

a. Main Process:
communicates with the | |
WMS (sends heartbeat and hearlbeat """""
status updates). statusupdate "7 = SRR BESRESES SESRN PRGBS ER

b. Payload Process: v i
executes the actual job { . UNIX

Pilot
payload. l Daemon
3. Input/output data is transferred
via Data Storages (NFS now).
4. WMS controls task distribution

and monitoring. ‘
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Job state model
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EXTRACTED
OBTAINED
PRE-PROCESSING
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RUNNING

FINISHED
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FAILED

set by the WMS

set by the Pilot



Pilot pipeline
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Additional scripts

Name of script

update_pilot.py

registrator.py

daemons_runner.py

archiver.py

setup.sh

Type

Legacy

Setup/Testing

Testing

Setup

Setup

Description

Downloads the latest pilot package from GitLab and updates it in
NFS storage automatically.

Registers datasets and files in the API, calculates checksums,
and manages builder directories.

Manages multiple daemon processes: start, stop, and status.
Handles config files and logging.

Archives a directory or copies a file to NFS storage. Supports
both release and dev modes.

Installs dependencies, unpacks binaries/configs, and prepares

the environment for running the daemon. y



Configuration of the pilot and daemon

pilot >

= config_example.ini
[rabbit_settings]
RABBITMQ_USERNAME=user
RABBITMQ_PASSWORD=password
RABBITMQ HOST=11.111.111.11
RABBITMQ_EXCHANGE=jobs
RABBITMQ_VIRTUAL_HOST=virtual_host
RABBITMQ_PORT=5672

[node_settings]

SERVER_ADRESS = http://11.111.111.11:8080

PROCESSOR_TYPE = cpu
PILOT_ID =1
SCRIPT_PREFIX = /path_to_data/

[logging]

LOG_LEVEL = INFO
MAX_LOG_SIZE 10485760
BACKUP_COUNT 3

daemon >

daemon_config.ini

[node_settings]
SCRIPT_DELAY = 10
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# Configuration file for SPD DAQ data |
# 2023/03/01 q ICA

#Data file name format: run-<run number>-<chunk
number>-<builder id>.spd

“DAQ emulator”

Using SPD DAQ emulator, we’ve generated
50 files, each ~2Gb;

Input dataset has been registered with these
files;

Task has been processed (or 50 jobs);

The payload for Pilot is simple: compute the
MD5/BLAKE3 hash, as there is no actual
computation involved at this stage.;
Generation of one files takes around ~7 min,
using JINR Cloud VM: 12x 1-core Intel Xeon
E5-2650

Registration of the entire dataset: ~10 sec

DataFileNameFormat = run-%06u-%05u-%02u.spd

#RND generator seed:
RandomSeed = 12345

#The size limit of the output data file in bytes:
DataFileSizelLimit = 2147483648

#debug mode for debuging front-end card. If it is 1
then generator will

#produce all data words (headers and trailers) even
if there are no hits,

#otherwise all empty data blocks are removing
DebugMode =0

#Source ID(s) of the clock modulue(s) for
measurement start of frame time:
FrameClockID = 1000, 1001

#Source ID(s) of the TDC module(s) for measurement
of the bunch crossing time:
BunchCrossingID = 1004

#Slice length in ns (must be less than smallest TDC
over-roll time (4.5 ms for RS)):
Slicelength = 10000

#Number of slices in a frame:
FrameLength - 100000 13



Conclusion

Unified task execution interface

Adaptability across platforms

Reduced overhead (scheduling & execution)
Scalability (to millions of concurrent tasks)
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Thanks for your attention!
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