Pilot Applications for
Distributed Job Execution in
the SPD Online Filter System

Romanychev Leonid
JINR MLIT
romanychev@jinr.ru

11th International Conference
“Distributed Computing and Grid Technologies in Science and Education”
(GRID’2025)
July 7-11, 2025

N
(NICAs
Introduction: Role of Pilot Applications

e Provide a flexible mechanism for execution of computational tasks.

e Widely used in high-throughput computing (HTC) systems for scientific data
processing (ex. LHC computing).

e Issue: lack of unified abstraction and best practices leads to a variety of
implementations.

Core Components of Pilot Software

Pilot Manager: Launches

pilots (resource placeholder:

on computing resource;
Interfaces with SLURM,
HTCondor, etc.
Workload Manager:
Organizes task queue
(dependencies, priorities,
resource readiness).
Task Manager: Executes
tasks on pilot-reserved
resources; Manages task
lifecycle (launch, restart,
monitor, error handling).

Workload

Pilot System

Machine

Pilot Workload
Manager Manager

Pilot Provisioning

Resource Placeholder (i.e., pilot)

Task

Task Dispatching

*7 Manager

Task Execution

o
(NICAs
Functionality & Architecture

Functional Stages:

e Provisioning (Acquiring & deploying resources)
e Dispatching (Assigning tasks to pilots)
e Execution (Running tasks on resources)

Architectural Features:

e Multi-level scheduling
e Communication Models (Master-worker, Broker-oriented)
e Flexibility (integrates with various DCRs: clusters, grids, clouds)

o
(NICAS
Late Binding Mechanism

Definition:

Late binding is the process of assigning tasks to active pilots at the moment of
availability, unlike early binding, where tasks are tied to inactive pilots.

Benefits:

e Dynamic task allocation improves resource utilization efficiency.
e Reduces queue wait times, critical for high-performance systems.
e Enables high throughput (e.g., up to 1 million tasks per day for ATLAS).

DCR (Grid, Cloud, HPC, Workstations)

Container (Job, VM)

Coaster
Swift, Java/Python GoG System Coaster Client (GoG API)
application
Workload/Task

I

Coaster Service

Providers | Data Proxy

Pilot Provisioning

(Multi-level scheduling)

Pilot (Job Agent)

Task Execution
— Worker

Task Dispatching

Resource
(core, memory)

(Multi-level scheduling,
Early/Late binding)

o HTCondor Glidein and GlideinWMS
Application
s Interface (CLI)
Workload/Task
vo
Frontend Schedd
DCR (Local resource, OSG) WMS HTCondor
Collector Collector
Glidein Negotiator
Container (Job) Factory

Pilot Provisioning|

Pilot (Glidein)

Task Execution

(Multi-level scheduling)

Task Dispatching

Python Script, Skeleton,
SWIFT

RADICAL-Pilot

Workload/Task

DCR (workstation, HTC)

Container (Job)

> Pilot-API

Python Module

Pilot cu
Manager Manager

Database

Pilot Provisioning

Pilot

Task Dispatching

gent

Task E: ti
ask Execution A

Resource
(core, memory)

(Multi-level scheduling,
Early/Late binding)

Resource
(core, memory)

(Multi-level scheduling,
Early/Late binding)

JDL/WEB job description,
Python Script

DIRAC WMS

Workload/Task

DCR (Grid, Cloud, HPC, Workstations)

Container (Job, VM)

| Job Manager (CLI, Web, API)

Task Queue
Directors

Pilot Provisioning

Pilot (Job Agent)

Watchdog

Task Execution

(Multi-level scheduling)

Task Dispatching

Job Wrapper [«

(core, memory)

Resource ‘

(Multi-level scheduling,
Early/Late binding)

]
NICA

Application

DIANE

Workload/Task

DCR (Local, EGI/WLCG Grid)

Container (Job)

Pilot (WorkerAgent)

Task

Interface (CLI)

RunMaster

Task
Scheduler

Pilot Provisioning|
(Multi-level scheduling)

Task Dispatching

Worker

Resource
(core, memory)

(Mutti-level scheduling,
Early/Late binding)

Application

PANDA

Workload/Task

DCR (Local resource, OSG)

Container (Job)

> Interface (Python API)

Grid Scheduler || PANDA Server

Task

AutoPilot Buffer

Data
Service

Pilot Provisioning} Broker

Pilot

Task Execution R

Multi-level
(

Job
Dispatcher

Task Dispatching

unJob

Resource
(core, memory)

(Multi-level scheduling,
Early/Late binding)

SPD Online Filter Pilot Software

Workload Manager

Workload

Machine

Pilot System
Pilot Workload
Manager Manager

Pilot Provisioning

Resource Placeholder (i.e., pilot)

Task

l Manager

Task Execution

Task Dispatching

System
Machine
Queue
(Job Dispatching)
Daemon
[
!}
Pilot
Job "
Manager
Job Execution

The general scheme

SPD Online Filter Pilot
Scheme

SPD Online Filter Pilot Software

Two separate queues for CPU - :’ueue p—p :’ueue
and GPU tasks. Repository

2. The Pilot consists of two
processes:

a. Main Process:
communicates with the | |
WMS (sends heartbeat and hearlbeat """""
status updates). statusupdate "7 = SRR BESRESES SESRN PRGBS ER

b. Payload Process: v i
executes the actual job { . UNIX

Pilot
payload. l Daemon
3. Input/output data is transferred
via Data Storages (NFS now).
4. WMS controls task distribution

and monitoring. ‘

stage-in

» Payload process
stage-out Y # N Od e

Job state model

REGISTERED/READY
EXTRACTED
OBTAINED
PRE-PROCESSING
STAGE-IN

RUNNING

FINISHED
POST-PROCESSING
STAGE-OUT
COMPLETED
FAILED

set by the WMS

set by the Pilot

Pilot pipeline

Start Pilot

JOB

l

Init logging

l

Reading config

l

Getting a message
from RabbitMQ

l

Validation

l

Starting new process

l

hearbeats, statuses
and receiving
commands

o

l

Completion of pilot

Launching job thread

Obtaining the job

|

Customization script

l

Staging in files

]

While signal

l

Running the payload

]

l

Analyzing the result

|

l

Staging out the files

]

l

Sending signal

|

v

Ending the process

J

)
NICA

10

Additional scripts

Name of script

update_pilot.py

registrator.py

daemons_runner.py

archiver.py

setup.sh

Type

Legacy

Setup/Testing

Testing

Setup

Setup

Description

Downloads the latest pilot package from GitLab and updates it in
NFS storage automatically.

Registers datasets and files in the API, calculates checksums,
and manages builder directories.

Manages multiple daemon processes: start, stop, and status.
Handles config files and logging.

Archives a directory or copies a file to NFS storage. Supports
both release and dev modes.

Installs dependencies, unpacks binaries/configs, and prepares

the environment for running the daemon. y

Configuration of the pilot and daemon

pilot >

= config_example.ini
[rabbit_settings]
RABBITMQ_USERNAME=user
RABBITMQ_PASSWORD=password
RABBITMQ HOST=11.111.111.11
RABBITMQ_EXCHANGE=jobs
RABBITMQ_VIRTUAL_HOST=virtual_host
RABBITMQ_PORT=5672

[node_settings]

SERVER_ADRESS = http://11.111.111.11:8080

PROCESSOR_TYPE = cpu
PILOT_ID =1
SCRIPT_PREFIX = /path_to_data/

[logging]

LOG_LEVEL = INFO
MAX_LOG_SIZE 10485760
BACKUP_COUNT 3

daemon >

daemon_config.ini

[node_settings]
SCRIPT_DELAY = 10

12

Configuration file for SPD DAQ data |
2023/03/01 q ICA

#Data file name format: run-<run number>-<chunk
number>-<builder id>.spd

“DAQ emulator”

Using SPD DAQ emulator, we’ve generated
50 files, each ~2Gb;

Input dataset has been registered with these
files;

Task has been processed (or 50 jobs);

The payload for Pilot is simple: compute the
MD5/BLAKE3 hash, as there is no actual
computation involved at this stage.;
Generation of one files takes around ~7 min,
using JINR Cloud VM: 12x 1-core Intel Xeon
E5-2650

Registration of the entire dataset: ~10 sec

DataFileNameFormat = run-%06u-%05u-%02u.spd

#RND generator seed:
RandomSeed = 12345

#The size limit of the output data file in bytes:
DataFileSizelLimit = 2147483648

#debug mode for debuging front-end card. If it is 1
then generator will

#produce all data words (headers and trailers) even
if there are no hits,

#otherwise all empty data blocks are removing
DebugMode =0

#Source ID(s) of the clock modulue(s) for
measurement start of frame time:
FrameClockID = 1000, 1001

#Source ID(s) of the TDC module(s) for measurement
of the bunch crossing time:
BunchCrossingID = 1004

#Slice length in ns (must be less than smallest TDC
over-roll time (4.5 ms for RS)):
Slicelength = 10000

#Number of slices in a frame:
FrameLength - 100000 13

Conclusion

Unified task execution interface

Adaptability across platforms

Reduced overhead (scheduling & execution)
Scalability (to millions of concurrent tasks)

14

Thanks for your attention!

15

