
Pilot Applications for 
Distributed Job Execution in 

the SPD Online Filter System
Romanychev Leonid

JINR MLIT
romanychev@jinr.ru

11th International Conference
“Distributed Computing and Grid Technologies in Science and Education”

(GRID’2025)
July 7-11, 2025



Introduction: Role of Pilot Applications

● Provide a flexible mechanism for execution of computational tasks.
● Widely used in high-throughput computing (HTC) systems for scientific data 

processing (ex. LHC computing).
● Issue: lack of unified abstraction and best practices leads to a variety of 

implementations.

2



Core Components of Pilot Software

● Pilot Manager: Launches 
pilots (resource placeholders) 
on computing resource; 
Interfaces with SLURM, 
HTCondor, etc.

● Workload Manager: 
Organizes task queue 
(dependencies, priorities, 
resource readiness).

● Task Manager: Executes 
tasks on pilot-reserved 
resources; Manages task 
lifecycle (launch, restart, 
monitor, error handling).

3



Functionality & Architecture

Functional Stages:

● Provisioning (Acquiring & deploying resources)
● Dispatching (Assigning tasks to pilots)
● Execution (Running tasks on resources)

Architectural Features:

● Multi-level scheduling
● Communication Models (Master-worker, Broker-oriented)
● Flexibility (integrates with various DCRs: clusters, grids, clouds)

4



Late Binding Mechanism

Definition:

Late binding is the process of assigning tasks to active pilots at the moment of 
availability, unlike early binding, where tasks are tied to inactive pilots.

Benefits:

● Dynamic task allocation improves resource utilization efficiency.
● Reduces queue wait times, critical for high-performance systems.
● Enables high throughput (e.g., up to 1 million tasks per day for ATLAS).

5



6



SPD Online Filter Pilot Software

7

The general scheme SPD Online Filter Pilot 
Scheme



SPD Online Filter Pilot Software

8

1. Two separate queues for CPU 
and GPU tasks.

2. The Pilot consists of two 
processes:
a. Main Process: 

communicates with the 
WMS (sends heartbeat and 
status updates).

b. Payload Process: 
executes the actual job 
payload.

3. Input/output data is transferred 
via Data Storages (NFS now).

4. WMS controls task distribution 
and monitoring.



Job state model

● REGISTERED/READY
● EXTRACTED
● OBTAINED
● PRE-PROCESSING
● STAGE-IN
● RUNNING
● FINISHED
● POST-PROCESSING
● STAGE-OUT
● COMPLETED
● FAILED

9

set by the Pilot

set by the WMS



Pilot pipeline

10



Additional scripts

11

Name of script Type Description

update_pilot.py Legacy Downloads the latest pilot package from GitLab and updates it in 
NFS storage automatically.

registrator.py Setup/Testing Registers datasets and files in the API, calculates checksums, 
and manages builder directories.

daemons_runner.py Testing Manages multiple daemon processes: start, stop, and status. 
Handles config files and logging.

archiver.py Setup Archives a directory or copies a file to NFS storage. Supports 
both release and dev modes.

setup.sh Setup Installs dependencies, unpacks binaries/configs, and prepares 
the environment for running the daemon.



Configuration of the pilot and daemon

12



“DAQ emulator”

1. Using SPD DAQ emulator, we’ve generated 
50 files, each ~2Gb;

2. Input dataset has been registered with these 
files;

3. Task has been processed (or 50 jobs);
4. The payload for Pilot is simple: compute the 

MD5/BLAKE3 hash, as there is no actual 
computation involved at this stage.;

5. Generation of one files takes around ~7 min, 
using JINR Cloud VM: 12x 1-core Intel Xeon 
E5-2650

6. Registration of the entire dataset: ~10 sec
13



Conclusion

● Unified task execution interface
● Adaptability across platforms
● Reduced overhead (scheduling & execution)
● Scalability (to millions of concurrent tasks)

14



Thanks for your attention!

15


