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SPD experiment: brief reminder

● Polarized proton and deuteron beams

● Collision energy up to 27 GeV

● luminosity up to 1032 cm−2 s−1

● Bunch crossing every 80 ns = crossing rate 

12.5 MHz

● Number of registration channels in SPD ~ 500000

● ~ 3 MHz event rate (at max luminosity) = pileups

○ ~ 20 GB/s (or 200PB/year) “raw” data

● Selection of physics signal requires momentum 

and vertex reconstruction

○ no simple trigger is possible
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SPD OnLine Filter - High-throughput Computing system

● HTC is defined as a type of computing that simultaneously executes numerous 

simple and computationally independent jobs to perform a data processing task.

● Since each slice of data can be processed simultaneously, it can be applied to data 

aggregated by SPD DAQ.

● Data processing should be multistaged for providing the efficient usage of computing 

resources
○ One stage of processing → Task

○ Processing of data unit (file) → Job 
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SPD Online Filter - Middleware

The following are the main services responsible for  delivering all 

functionality

● Data management system

○ data catalog and lifetime support

● Workflow Management System: 

○ defining and execution of processing chains by generating 

of required number of computational tasks

● Workload management system:  

○ Generation of required number of jobs to perform task;

○ Dispatch jobs to working nodes through pilots;

○ Control of jobs executions;

○ Control of pilots (identifying of "dead" pilots)

○ Efficient resource management
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❖ Event unscrambling: transform data into event's oriented 
format:
➢ Partial preliminary reconstruction;  

❖ Filter 'boring' events and leave only 'hot'; 
❖ Settle output data, merge events into files and files in 

datasets for future processing.
❖ Prepare data for online data quality monitoring etc.

Key features



❖ Server part: managing of tasks throughput, 
controlled tasks slicing to jobs, distribution of jobs 
across resources, managing of job execution 

❖ Agent application (Pilot): payload execution 
environment, collecting and providing of job 
monitoring information

Workload Management System
WFMS interactions

➔ Accepting of data processing tasks from top level 
management of the tasks: canceling, changing of 
priority

➔ Task compilation progress report
➔ List of produced files in dataset

DSM interactions

➔ Dataset structure gathering

➔ File/logs registration in the associated dataset

➔ Dataset closure
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Task and jobs

● Task - unit of workload that is responsible for 

processing a block of homogeneous data

● Task completion criteria is processing the whole block 

of data

6

● Job (payload) is a unit of work which process a unit 

of data  

Task state DAG Job state DAG



WMS requirements

Task registration: formalized task description, including 

job options and required metadata registration.

Jobs defenition: generation of required number of jobs 

to perform task by controlled loading of available 

computing resources.

Jobs execution management: continuous job state 

monitoring by communication with pilot, job retries in 

case of failures, job execution termination.
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Workload management system architecture



Architecture and functionality of WMS

❖ Microservice architecture
➢ task-manager – responsible for interaction with 

workflow management system, providing functionality 
for task registration, cancellation, progress tracking, and 
final report generation

➢ task-executor – responsible for: jobs generation by the 
dataset content and task type, management of the task 
queue.

➢ job-manager – responsible for: receiving jobs from the 
broker, jobs registering, transfering ready jobs to the 
job-executor, provides internal API’s for jobs and files 
metadata.

➢ job-executor –  dispatches jobs to pilots and oversees 
their completion, data registration.

task-manager API
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Architecture and functionality of Pilot Agent

● Standalone set of applications: 

○ Daemon - control continuous (one by 

one)  launching of pilot application on 

working node

○ Pilot application - communicate  with 

jobExecutor to get  a job and update  job 

state, perform payload execution    
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WSM-Pilot communication

❖ Two channels of communication:  

➢ REST (aiohttp) 

➢ Message queue  (RabbitMQ)

Two types of architectures: 
● Multi-CPU
● Multi-CPU + GPU 

Pilot identify type of resource and pickup job from 
proper queue.
In case there is no GPU oriented jobs, pilot will take the 
job from "CPU" queue.
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Database design

Tables:

❖ JOB_DAT - catalogue with current jobs waiting 

to be processed in the system (job queue)

❖ TASK_DAT - task queue

❖ PILOT_DAT - pilots catalogue

❖ FILE_DAT - files catalogue (for registered jobs)
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Database scheme



Task partitioning

❖ The task-executor microservice is responsible 

for generating jobs for a set of files associated 

with dataset which should be processed by 

task.

❖ Jobs generation process should be performed 

asynchronously, taking into account the 

possibility of simultaneous processing of 

several tasks.

❖ Within each task (dataset), jobs are generated 

in chunks.

❖ The algorithm must guarantee the processing 

of each dataset in a proportion that will 

depend on the priorities of the tasks.

Asynchronous job generation 

12



Main

● Python 3.11
● Docker + Docker Compose
● PostgreSQL
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Tech stack

Frameworks

● FastAPI
● aio-pika (RabbitMQ)
● aiohttp

Database

● psycopg
● asyncpg
● alembic
● SQLAlchemy



Next steps

➔ Complete integration of WMS and pilot application
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➔ Modeling the workload on the system and 

measuring its throughput at different load levels

➔ Profiling: CPU’s, RAM, IO operations

➔ The RED Method (Rate, Errors and Duration):
◆ requests rate, number of failed requests, 

requests processing  time

PilotWMS

➔ Complete the prototyping for the rest of the 

microservices: task-executor, job-executor

➔ Integration testing

➔ DLQ (Death letter queues) implementation

Mid/long-term

Short-term Short-term

➔ Analysis of system performance according to known 

methodologies

◆ USE Method (Utilization, Saturation and Errors)

Mid/long-term



Conclusion

As a result, the system design has been carried out and the main components of the workload management system 
have been described.

➢ The architecture of the entire WMS has been developed, taking into account the features and business 
logic of such systems as WFMS, DMS and agent application.

➢ REST API interfaces with the WFMS and DMS been described.
➢ Task partitioning algorithm has been proposed.
➢ task-manager prototype has been developed.
➢ A coordinated interface is provided between the agent application and the WMS.
➢ A tool template is obtained that can be used to run simple tasks on a cluster.

 

Next, it is planned to debug integration with other systems and move to the stage of extended functional testing of 
the computing system.
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