
SPD On-line Filter: Workload management system and Pilot Agent

Greben N.V., Romanychev L.R., Oleynik D.A., Degtyarev A.B.
Saint Petersburg State University

10th International Conference

«Distributed Computing and GRID Technologies in Science and Education» (GRID-2023)

06 july 2023

SPD experiment: brief reminder

● Polarized proton and deuteron beams

● Collision energy up to 27 GeV

● luminosity up to 1032 cm−2 s−1

● Bunch crossing every 80 ns = crossing rate

12.5 MHz

● Number of registration channels in SPD ~ 500000

● ~ 3 MHz event rate (at max luminosity) = pileups

○ ~ 20 GB/s (or 200PB/year) “raw” data

● Selection of physics signal requires momentum

and vertex reconstruction

○ no simple trigger is possible
2

SPD OnLine Filter - High-throughput Computing system

● HTC is defined as a type of computing that simultaneously executes numerous

simple and computationally independent jobs to perform a data processing task.

● Since each slice of data can be processed simultaneously, it can be applied to data

aggregated by SPD DAQ.

● Data processing should be multistaged for providing the efficient usage of computing

resources
○ One stage of processing → Task

○ Processing of data unit (file) → Job

3

SPD Online Filter - Middleware

The following are the main services responsible for delivering all

functionality

● Data management system

○ data catalog and lifetime support

● Workflow Management System:

○ defining and execution of processing chains by generating

of required number of computational tasks

● Workload management system:

○ Generation of required number of jobs to perform task;

○ Dispatch jobs to working nodes through pilots;

○ Control of jobs executions;

○ Control of pilots (identifying of "dead" pilots)

○ Efficient resource management

4

❖ Event unscrambling: transform data into event's oriented
format:
➢ Partial preliminary reconstruction;

❖ Filter 'boring' events and leave only 'hot';
❖ Settle output data, merge events into files and files in

datasets for future processing.
❖ Prepare data for online data quality monitoring etc.

Key features

❖ Server part: managing of tasks throughput,
controlled tasks slicing to jobs, distribution of jobs
across resources, managing of job execution

❖ Agent application (Pilot): payload execution
environment, collecting and providing of job
monitoring information

Workload Management System
WFMS interactions

➔ Accepting of data processing tasks from top level
management of the tasks: canceling, changing of
priority

➔ Task compilation progress report
➔ List of produced files in dataset

DSM interactions

➔ Dataset structure gathering

➔ File/logs registration in the associated dataset

➔ Dataset closure

5

Task and jobs

● Task - unit of workload that is responsible for

processing a block of homogeneous data

● Task completion criteria is processing the whole block

of data

6

● Job (payload) is a unit of work which process a unit

of data

Task state DAG Job state DAG

WMS requirements

Task registration: formalized task description, including

job options and required metadata registration.

Jobs defenition: generation of required number of jobs

to perform task by controlled loading of available

computing resources.

Jobs execution management: continuous job state

monitoring by communication with pilot, job retries in

case of failures, job execution termination.

7

Workload management system architecture

Architecture and functionality of WMS

❖ Microservice architecture
➢ task-manager – responsible for interaction with

workflow management system, providing functionality
for task registration, cancellation, progress tracking, and
final report generation

➢ task-executor – responsible for: jobs generation by the
dataset content and task type, management of the task
queue.

➢ job-manager – responsible for: receiving jobs from the
broker, jobs registering, transfering ready jobs to the
job-executor, provides internal API’s for jobs and files
metadata.

➢ job-executor – dispatches jobs to pilots and oversees
their completion, data registration.

task-manager API

8

Architecture and functionality of Pilot Agent

● Standalone set of applications:

○ Daemon - control continuous (one by

one) launching of pilot application on

working node

○ Pilot application - communicate with

jobExecutor to get a job and update job

state, perform payload execution

9

WSM-Pilot communication

❖ Two channels of communication:

➢ REST (aiohttp)

➢ Message queue (RabbitMQ)

Two types of architectures:
● Multi-CPU
● Multi-CPU + GPU

Pilot identify type of resource and pickup job from
proper queue.
In case there is no GPU oriented jobs, pilot will take the
job from "CPU" queue.

10

Database design

Tables:

❖ JOB_DAT - catalogue with current jobs waiting

to be processed in the system (job queue)

❖ TASK_DAT - task queue

❖ PILOT_DAT - pilots catalogue

❖ FILE_DAT - files catalogue (for registered jobs)

11

Database scheme

Task partitioning

❖ The task-executor microservice is responsible

for generating jobs for a set of files associated

with dataset which should be processed by

task.

❖ Jobs generation process should be performed

asynchronously, taking into account the

possibility of simultaneous processing of

several tasks.

❖ Within each task (dataset), jobs are generated

in chunks.

❖ The algorithm must guarantee the processing

of each dataset in a proportion that will

depend on the priorities of the tasks.

Asynchronous job generation

12

Main

● Python 3.11
● Docker + Docker Compose
● PostgreSQL

13

Tech stack

Frameworks

● FastAPI
● aio-pika (RabbitMQ)
● aiohttp

Database

● psycopg
● asyncpg
● alembic
● SQLAlchemy

Next steps

➔ Complete integration of WMS and pilot application

14

➔ Modeling the workload on the system and

measuring its throughput at different load levels

➔ Profiling: CPU’s, RAM, IO operations

➔ The RED Method (Rate, Errors and Duration):
◆ requests rate, number of failed requests,

requests processing time

PilotWMS

➔ Complete the prototyping for the rest of the

microservices: task-executor, job-executor

➔ Integration testing

➔ DLQ (Death letter queues) implementation

Mid/long-term

Short-term Short-term

➔ Analysis of system performance according to known

methodologies

◆ USE Method (Utilization, Saturation and Errors)

Mid/long-term

Conclusion

As a result, the system design has been carried out and the main components of the workload management system
have been described.

➢ The architecture of the entire WMS has been developed, taking into account the features and business
logic of such systems as WFMS, DMS and agent application.

➢ REST API interfaces with the WFMS and DMS been described.
➢ Task partitioning algorithm has been proposed.
➢ task-manager prototype has been developed.
➢ A coordinated interface is provided between the agent application and the WMS.
➢ A tool template is obtained that can be used to run simple tasks on a cluster.

Next, it is planned to debug integration with other systems and move to the stage of extended functional testing of
the computing system.

15

