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Motivation

• Particle track reconstruction in dense environments such as the Run-4 detectors 
of the High Luminosity Large Hadron Collider (HL-LHC) and of MPD NICA is a 
challenging pattern recognition problem.

• Modern experiments produce data with high frequency.

• Well-known tracking algorithms based on the Kalman filter are not scaling well 
with such amounts of data.
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Neural networks

• Deep learning algorithms bring a lot of potential to the tracking problem, due to  
their capability to model complex non-linear data dependencies,  learn effective 
representations of high-dimensional data through training parallelize easily on 
high-throughput architectures such as GPUs

• One architecture may be adapted for different task or solve them simultaneously
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SPD Experiment

• SPD (Spin Physics Detector) is a future experiment at the NICA facility in Dubna. 
The main goal of this experiment is to test the foundations of quantum 
chromodynamics (QCD).

• It is expected that the SPD experiment will produce events with a frequency of 3 
MHz (20 Gb/s). 

• The events are received in time slices, making the development of an effective 
online solution crucial.

• There is a need to develop a modern system for fast event reconstruction in the 
straw detector.
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Event segmentation pipeline

• Event segmentation is 
an important stage in 
event recognition. 

• It enhances further 
analysis and processing. 

• Filtering out fake hits 
reduces the 
computational 
requirements and 
memory consumption 
for track 
reconstructions.

• It indicates promise for 
the model to tackle 
more complex tasks in 
the future.
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Transformers

• Transformers is the dominant architecture family in different fields: NLP, CV, autonomous driving 
etc. due to the ability to model long-range dependencies 

• Transformers are invariant to permutation and cardinality of the input elements, which is highly 
suitable for point cloud processing

• The main feature of transformer is the attention mechanism, which aims to “understand” relation 
between input elements

• By assigning weights to the elements based on their relevance and importance, the attention 
mechanism enables the model to focus on relevant information during processing.
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Attention mechanism

• Given embedded feature map, it is projected to three 
different feature spaces using three learnable weight 
matrices 𝑊𝑄 ∈ 𝑅,𝐶×𝐶𝑄 , 𝑊𝑘 ∈ 𝑅𝐶×𝐶𝐾 , 𝑊𝑉 ∈ 𝑅𝐶×𝐶,where 
typically 𝐶𝐾 =  𝐶𝑄.We can formulate then 

𝑄𝑢𝑒𝑟𝑦 = 𝑋𝑊𝑄, 𝐾𝑒𝑦 = 𝑋𝑊𝐾 , 𝑉𝑎𝑙𝑢𝑒 = 𝑋𝑊𝑉

•  Given the Query, Key, and Value matrices, an attention 
map is formulated as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑝 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇/ 𝑑𝑘)* V

•  The attention map of size of N×N measures the similarity 
of any two input points

• Attention map is permutation equivariant and dynamic 
during inference

• Computational complexity of self-attention is N^2
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PCT

• PCT aims to transform(encode) the input points into a new higher dimensional 
feature space, which can characterize semantic affinities between points

• Encoder is based on transformer architecture using attention layers

• Using max-pooling, global representation of event is constructed.

• This representation is added to each point embedding to preserve context

• Decoder returns probability of being real track hit for each point

Figure from “PCT: Point cloud transformer” 8



Data generation

• Generator is written as a Python program.

• Multiplicity in each event is given by a random 
number from 1 to 10 tracks per event.

• The transverse momentum of a particle is a random 
number with a uniform distribution in the range of 
values from 100 to 1000 MeV/s.

• Vertex coordinates are also random in the volume 
corresponding to the area of particle collisions.

• The particle trajectory is represented by a selection 
of points on a segment of a helix with a helix pitch  
ℎ=2𝜋/𝐵 |𝑚/𝑞|𝑣𝑐𝑜𝑠𝛼 and radius 𝑅=1/𝐵|𝑚/𝑞|𝑣𝑠𝑖𝑛𝛼 .

• Detector configuration with 35 stations is considered.
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Experiments

Number of 
events in 
time slice

Precision Recall Speed 
(sec/event)

1 0.86 0.97 0.07

2 0.81 0.98 0.125 (0.23)

5 0.77 1.0 0.21 (1.08)

10 0.88 0.92 0.73 (7.25)

• Data for training: 5000 generated events

• Data for testing: 100 generated events

• Used metrics:

• 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑡𝑟𝑢𝑒

𝑝𝑟𝑒𝑑

𝑁𝑖𝑛

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑡𝑟𝑢𝑒

𝑝𝑟𝑒𝑑

𝑁𝑝𝑟𝑒𝑑

• 𝑁𝑡𝑟𝑢𝑒
𝑝𝑟𝑒𝑑

 - no. real hits that the network found

• 𝑁𝑖𝑛 - no. all real hits known from Monte-Carlo

• 𝑁𝑝𝑟𝑒𝑑 - no. all predicted hits

Speed value in brackets illustrates
speed for whole time slice
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Experiment results

• Predicted and real labels of hits for portions of 1, 2, 5 events

• Red color – predicted and real label are different, green – same

11Note: Seems that the model overfitted to predict true hits



Event partition

• Given time slice of multiple events, we get huge numbers of hits (60 
events will produce > 32000 of hits)

• Complexity of attention block is O(N^2), which leads to insufficient 
time and memory consumption

• The time slice may be divided into smaller regions and analyzed 
locally. Hence complexity of model tends to O(N)
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Divide the detector
space into M voxels, 

i.e. smaller subspaces

Take hits from each voxel and form a 
batch of M x N x F samples pretending

that each sample is a mini-event
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F features

PCT 
model
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fakes

Combine into
one event

Event segmentation pipeline
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Experiments

Events per time 
slice

Number of parts Precision Recall Speed (events/sec)

1 16 0.96 0.98 0.06

1 32 0.97 0.97 0.7

1 64 0.96 0.99 0.07

2 64 0.97 0.95 0.17 (0.34)

5 64 0.93 0.97 0.27 (1.37)

10 64 0.90 0.97 0.59 (5.96)
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Experimental results

• Predicted and real labels of hits for portions of 1, 2, 5 events

• Red color – predicted and real label are different, green – same
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Future work

• Replace the attention block with a linear version.

• Develop a hierarchical segmentation model that utilizes both global 
and local voxel-wise features.

• Develop a dynamic event partitioning technique that uses anchor 
points for more efficient data processing.

• Adapt the model to reconstruct hits from raw data obtained from 
straw signals.

• Modify the model for the specific task of track recognition.

• Test the architecture on BM@N, MPD, and BESIII datasets to evaluate 
its performance and effectiveness.
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