Modern concept of the nucleon structure

A. Guskov DLNP, JINR

28th International Scientific Conference of Young Scientists and Specialists

Scientific g Scientists ists

inr.int

Alexey Guskov, Joint Institute for Nuclear Research

Fundamental interactions

Star systems

Planet systems

	Interaction	Interaction Gravitational Property	Weak	Electromagnetic	Stro	ong
	Property		Electroweak		Fundamental	Residual
	Acts on:	Mass - Energy	Flavor	Electric charge	Color charge	Atomic nuclei
9	Particles experiencing:	All particles	quarks, lepton s	Electrically charged	Quarks, Gluons	Hadrons
	Particles mediating:	Graviton (Not yet observed)	W⁺, W⁻ and Z⁰	γ (photon)	Gluons	Mesons
	Strength at the scale of quarks:	10 ⁻⁴¹ (predicted)	10-4	1	60	Not applicable to quarks
	Strength at the scale of protons/neutrons:	10 ⁻³⁶ (predicted)	10-7	1	Not applicable to hadrons	20

Rutherford experiment

E. Rutherford 1909-1913

Discovery of the proton

E. Rutherford, 1919

$${}^{14}_{7}N + {}^{4}_{2}He \rightarrow {}^{17}_{8}O + {}^{1}_{1}H$$

What is keeping the proton in the nucleus?!

Discovery of the neutron

J. Chadwick, 1932, the Nobel Prize in 1961

 ${}^9_4Be + {}^4_2He \rightarrow {}^{12}_6C+n$

Yukawa potential

H. Yukawa, 1934

Exchange nature of nuclear forces

$$\Delta E \Delta t \ge \hbar$$
$$\Delta t = R/c$$

$$m = \frac{\Delta E}{c^2} \sim \frac{\hbar}{Rc} = 200 \, \text{MeV}$$

Potential of nucleon-nucleon interaction

$$V(r) = -g^2 \frac{e^{-mcr/\hbar}}{r}$$

Discovery of π^{\pm} -mesons

1947

The nuclear emulsion was irradiated in the mountains by secondary cosmic rays. Short tracks of particles stopped in the emulsion were found, which then decayed.

 $\pi^+ \to \mu^+ \nu_\mu$

I950 Discovery of neutral πmeson

Alexey Guskov, Joint Institute for Nuclear Research

Spin

Angular momentum is a measure of the amount of rotation

Spin of fundamental particle is its intrinsic angular momentum not related with rotation

 $ec{L}=ec{r} imesec{p}$ - in classics

Spin is a solely quantum-mechanical phenomenon

Proton spin: 1/2 Units: ħ

Every particle can have an orbital momentum and a spin at the same time electron

Total momentum (spin) of a composite particle is determined the particle's spin is determined by the spin and the angular momenta of its components

Complexity of nucleons

	g _s (expected)	gs (measured)
е	-2	-2.0023
Р	2	5.58
n	0	-3.83

1930s

This was the first indication that nucleons could be composite objects.

Proton size

R. Hofstadter - the Nobel Prize in 1961

1

р

1

n

0.5

2

r, fm

1.5

Proton radius puzzle

Different approaches gives different results

Solved or not?

Hadrons in scale

Quarks

M. Gell-Mann and G. Zweig -Nobel Prize in 1969

Alexey Guskov, Joint Institute for Nuclear Research

Partons - point-like objects inside the proton

Partonic model - 1969

R. Feynman

In the beginning of 70th charged partons were associated with quarks

Quark size?

HERA - high-energy electron-proton collider at DESY (1992-2007)

At the moment there is no indication that quarks have an internal structure

 $r_a < 0.7 \times 10^{-3} \text{ fm}$

Quantum ChromoDynamics - QCD

Gluon

- Self-interacting particle
- 8 gluons
- m=0 (theoretical value)
- m < I.3 MeV (experimental limit)</p>

Spin = I

Valence and sea quarks

Problem to describe hadrons ab initio

Confinement is not strictly proven!

low energies

Factorization theorem

Parton Distribution Functions

Parton Distribution Functions PDFs f(x,Q²) describes probability for given Q² to find inside the proton a parton carrying momentum fraction x

PDFs are universal, they are independent on the hard process

PDFs cannot be calculated in QCD from the first principles!

Parton Distribution Functions

Sea partons becomes more important at high Q²

QCD evolution equations: $f(x, Q_1^2) \rightarrow f(x, Q_2^2)$

How to measure PDFs ?

Deep Inelastic Scattering (DIS)

 $\sigma = \int \hat{\sigma} q(x) dx$

e

Hadronic interactions

CTEQ Collaboration JAM Collaboration DSSV Collaboration NNPDF Collaboration

e

c

Proton mass

Model-dependent decomposition of the proton mass

9 MeV

The Higgs mechanism has 938 MeV almost nothing to do with the formation of proton mass!

Proton mass

Polarized proton

Spin crisis

Naive quark model

L - orbital moments of quarks and gluons

Real situation

$$S_{N} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$$

Spin crisis

 $J = \frac{1}{2} \frac{\sim 30\%}{\Delta \Sigma + \Delta G + L_q' + L_g'} \frac{?}{\sim 10-20\%}$

To access the angular momenta we must study the 3D structure of the nucleon!

For Solar System

98% is angular moment!

Transversity Δ_T or h_I

 u and d quarks are polarized in opposite directions

- uncertainty is too high

- no sense for gluons in nucleon

3D-tomography of proton

Wigner Distributions

3D-proton & GPD

The size of the proton depends on which scale **x** we touch it !

Pressure of the hadronic matter in the proton is about 10³⁴ Pa!

Three proton radii

GPD-based calculations

Where transverse momentum come from?

TMD PDF

Nucleon Spin Polarization

5 additional (TMD) functions describing the correlation between the nucleon spin, parton spin, and parton transverse momentum.

TMD effects: Sivers effect

Probabilities to meet in a transversely polarized proton a parton moving to the left and to the right with respect to the (\vec{S}, \vec{p}) plane are different!

EMC-effect

Deuteron

More gluons at large x with respect to nucleon?

Deuteron as spin-1 particle

 Nector polarization

 $N_{1/2} - N_{-1/2}$
 $N_{1/2} + N_{-1/2}$

Tensor polarization $2N_0 - (N_{-1} + N_1)$ $2N_0 + N_{1/2} + N_{-1/2}$

New "tensor" PDFs, mostly unknown

New possibilities for gluons:

hard processes with gluon spin flip are impossible in spin-1/2 nucleon

but possible in deuteron!

Open questions

- Nucleon PDFs at low x
- Unpolarized and polarized 3-D structure of nucleon
- Partonic structure of other hadrons
- Flavor-dependent and gluon EMC-effect
- Polarized EMC-effect
- Polarized structure of nuclei with spin ≥ 1
- Factorization tests
- Proton radius puzzle

•

. . .

Hadron structure: main actors

Spin Physic Detector @ NICA

Alexey Guskov, Joint Institute for Nuclear Research

NICA collider

NICA collider

SPD and others

non-perturbative QCD

perturbative QCD

Spin Physics @ NICA

we plan to study how the proton and deuteron spin!

especially their gluon component!

Gluon TMD PDFs via asymmetries and angular modulations in the cross sections

SPD and gluon structure of nucleon

SPD setup

SPD: two stages

SPD collaboration

38 institutes from 15 states, >300 members

Present status of the project

SPD **Conceptual Design Report** was presented firstly in Jan 2021 and approved by the JINR PAC for Particle physics after an international expertise in Jan 2022

SPD **Technical Design Report** was presented firstly in Jan 2023, than it was updated and passed via the international expertise in 2024

The SPD team moving from the R&D phase to the construction of the detector

The **first phase** of the SPD project is included into the JINR's 7-year plan (2024-2030)

Growth of Knowledge

Continental drift, 1912

Age of Discovery, XV-XIX centuries

Alexey Guskov, Joint Institute for Nuclear Research