

Study of the detection of $\Lambda(\overline{\Lambda})$ -hyperons in the SPD

Gubachev Daniil, LHEP JINR, Dubna University On behalf of the SPD Collaboration

28th International Scientific Conference of Young Scientists and Specialists 28.10 - 01.11 2024r.

Spin Physics Detector

Study of the detection of Λ ($\overline{\Lambda}$)-hyperons in the SPD

Λ-hyperon

The elementary particle Λ -hyperon is a hadron with strangeness S = -1, with quark composition uds, the lightest of the strange baryons.

It can be born either directly from hadron collisions or from the decay of heavier hyperons. $p \qquad p$

Mass 1115.693 ± 0.006 MeV, average life time $(2.632 \pm 0.02)^*10^{-10}$ c. The main modes of decay (π, p) and (π^0, n) with probabilities $(63.9 \pm 0.5)\%$ and $(35.8 \pm 0.5)\%$.

A-hyperon is a well-studied particle that can preserve the polarization of the original quarks in polarized collisions $p^{\uparrow} + p = X + \Lambda^{\uparrow}$. Particle also has spontaneous polarization $p + p = X + \Lambda^{\uparrow}$.

Study of the detection of Λ ($\overline{\Lambda}$)-hyperons in the SPD

Simulation of events in the SPD

I PYTHIA8 used for generation of 4 mil. *pp* collisions with $\sqrt{s} = 27$ GeV;

- SpdRoot program package that is used for simulation and analysis. Package has the geometry of SPD built in it and uses Geant4 toolkit to calculate particle interaction with the detector material;
- KFParticle Kalman filter based package is designed to search and reconstruct short-lived particles by their decay products.

Analysis of optimal selection criteria

Tracks with good approximation were selected (by \chi^2/ndf value)

AYSS-2024

Podolanski-Armenteros distribution

Study of the detection of Λ ($\overline{\Lambda}$)-hyperons in the SPD

Invariant Mass of Λ ($\overline{\Lambda}$) with different cuts

AYSS-2024

Cuts	Λ	Background	FOM
1	58898	224989	110
2	50768	37845	170
3	50538	34320	173
4	43216	5278	196

Cuts	$\overline{\Lambda}$	Background	FOM
1	14370	108381	41
2	12781	17480	73.4
3	12697	16031	74.9
4	10223	2527	90

Invariant mass of (π^-, p) and (\overline{p}, π^+)

For data approximation a combination of the following functions of double Gaussian (signal) and third order polynomial (background) were used

Study of the detection of Λ ($\overline{\Lambda}$)-hyperons in the SPD

Binning for Λ ($\overline{\Lambda}$) by p

Binning was performed by using distribution of p for all generated Lambda. Each bin has an approximately equal number of generated Lambda.

Study of the detection of Λ ($\overline{\Lambda}$)-hyperons in the SPD

Reconstruction Efficiency as a function of p

AYSS-2024

Reconstruction Efficiency as a function of (p,θ) for the Λ -hyperon

AYSS-2024

Conclusion

- **(**) Optimal selection criteria for lambda and anti-lambda hyperons are determined: decay length >0.74, collinearity angle < 0.013, χ^2 for track extrapolation to primary vertex > 8.7;
- **X** Reconstruction efficiency of lambda and anti-lambda hyperons as a function of momentum is calculated: expected efficiency of lambda reconstruction $\approx 20\%$ and efficiency of anti-lambda $\approx 25\%$;
- **X** Reconstruction efficiency of lambda hyperon as a function of (p,θ) is calculated: expected efficiency of lambda reconstruction with high polar angle is up to 40%.

Thank you for your attention!

AYSS-2024

