Hadron Cluster Finding in the SPD/NICA

D. Budkouski^{1,2}A. Tumasyan³, S. Shmatov¹

¹JINR (Dubna) ² INP BSU (Minsk) ⁴ ANSL (Yerevan)

MMCP, 22 October 2024

Motivation

- Partons products of hadron-hadron hard scattering are not accessible for direct measurement
- We can get an information about these particles from the final state products resulting from harmonization of quark-gluon shower created by the initial parton
- If the energy of parton is high in the final state a *jet* of particles will be formed, which will correspond to initial parton
- The goals of this study:
 - Understand the admissibility of such approximation at low energies
 - Study processes of parton production at energy region between non-pQCD and pQCD

Jets at low energies in other experiments

- Jets at low energies were studied in 70s-80s in many experiments: PETRA, SFM 412, Pisa–Stony Brook, AFS etc.
- Since there was not good enough clustering algorithms, single high p_T hadrons and clusters of particles were considered as jets
- Main idea of those experiments was in confirmation of events with jets and measurement cross sections

https://inspirehep.net/literature/179516 https://inspirehep.net/literature/153610 https://inspirehep.net/literature/100764 https://inspirehep.net/literature/188734

Problem statement

Performance of reconstruction for particles clustered production

- Search for clustered production of particles (efficiency)
- Reconstruction of parton kinematics depending on reconstructed jet characteristic

Clustering algorithms and parameters

- Cluster/Jet reconstruction algorithm (Iterative Cone, kT, Anti-kT, Cambridge-Aachen, etc.)
- Radius parameter
- Inputs of clustering algorithms as objects of reconstruction and their kinematic thresholds
- Energy/momentum of reconstructed cluster

Machine learning algorithms

- Boosted decision tree with gradient boosting
- Use regression to reconstruct kinematics of parton-initiator

Event generation

- Pythia8 generator and FastJet package were used
- Energy of collisions $\sqrt{s} = 27 \text{ GeV}$
- anti-kt algorithm with parameter R = 0.4, 0.8, 1.2 was used for jet clustering
- Jet was clustered from final state particles with $p_T > 0.25$ GeV and $\eta < 5$
- Clustered jets were matched to hard scattered parton (status = 23)
- Jet should have at least two particles
- Considered cases:
 - $\succ qg \rightarrow q\gamma$ process (with and without prompt photon selections)
 - > All QCD processes (inclusive case)

Selection strategies

- $qg \rightarrow q\gamma$ process with prompt photon cuts
 - > Leading jet p_T cuts: $p_{T, jet}$ >3 GeV, >4 GeV, >5 GeV.
 - > Leading photon p_T cuts: $p_{T, photon}$ >3 GeV, >4 GeV, >5 GeV
 - > Photon and jet are back to back: $\Delta \phi > 2.7$
- $qg \rightarrow q\gamma$ process without prompt photon cuts
 - > Leading jet p_T cuts: $p_{T, jet}$ >3 GeV, >4 GeV, >5 GeV.
- QCD processes (Inclusive case)
 - > Leading jet p_T cuts: $p_{T, jet}$ >3 GeV, >4 GeV, >5 GeV.
 - At least 2 jets in event
 - > Secondary jet p_T > 2 GeV

Boosted decision tree training

- $qg \rightarrow q\gamma$ process training parameters
 - $\succ p_x$, p_y of leading jet
 - Ieading jet η
 - ➤ leading jet particle multiplicity
 - > Mean p_T of jet particles
 - $\succ p_x$, p_y of leading and secondary particles in jet
- Inclusive case training parameters
 - $\succ p_x$, p_y of secondary jet in addition to already mentioned parameters
- Jets reconstructed with different R are used together for training
- Training and analyzed samples were created independently
- Analyzed sample has two times more events

$qg \rightarrow q\gamma$ process with prompt photon cuts

- High p_T jets have good association with initial parton
- Regression improve σ but not significantly

$qg \rightarrow q\gamma$ process without prompt photon cuts

- Jet association with initial parton got worse
- Regression solve this problem and represent result that is close to shown on previous slide
- Since cuts on photon reduce number of events in 10 times we can use regression without cuts to increase statistics

All QCD processes

- QCD processes produce jets that cannot be simply associated with initial parton
- Problem is caused by events with high p_T jets and low p_T parton
- Regression gives reasonable results for initial parton p_T

Different training and analyzed samples

- Training from the same channel with one cut on jet pt could be applied for samples with different pt cuts
- Applying training from one channel to sample from different channel needs to be studied

Conclusion and plans

- Kinematical properties of hard scattered partons and clustered jets was compared on generator level
- Cuts on leading photon p_T and back to back condition between jet and photon together with cut on leading jet p_T select jets which could be associated with initial parton
- It seems to be impossible to select jets in inclusive case which could be associated with initial parton
- Using regression could be a solution to reconstruct kinematics of initial parton in inclusive case
- Plans:
 - > Find out additional parameters to improve training
 - > Try to realize unified training for different channels
 - Repeat this study with full simulation of detector

Back up

Clustered jet (ϕ , η) vs parton (ϕ , η)

Jets and partons moves in the same direction

Clustered jet (ϕ , η) vs parton (ϕ , η)

Jets and partons moves in the same direction

Optimization of parameters

- We studied different cuts on observed parameters and compare clustering algorithms:
 - η regions: 0/0.5/1/1.5/2/3
 - > Minimal jet p_T : 2, 2.5, 3, 3.5, 4, 4.5, 5
 - > Minimal particle p_T : 0.25, 0.5, 0.75, 1
 - > Anti-kt/Kt/CA algorithms with R = 0.4, 0.8, 1.2, 1.5
- Different clustering algorithms find similar jets

algorithm	mean	σ	σ /mean
Anti-kt, R=0.4	1.5466	0.4573	29.57
Kt, R=0.4	1.5513	0.4606	29.69
CA, R=0.4	1.5478	0.4583	29.61
Anti-kt, R=0.8	1.7480	0.5257	30.07
Kt, R=0.8	1.7478	0.5319	30.43
CA, R=0.8	1.7388	0.5250	30.19

• The table was prepared for η from 0 to 3, $p_{T,jet} > 2$ GeV and $p_{T,particle} > 0.25$ GeV $_{16/16}$

$qg \rightarrow q\gamma$ process without prompt photon cuts (photon in training)

 High p_T jets have good association with initial parton

- Clustering algorithms can find many jet-like objects in single event
- But we want to choose only objects, which could be associated with initial parton
- Clustered jets (with gen information)
 - > We take leading p_T jet and check, at least one jet constituent originated from hard scattered parton
- Clustered jets (only observable parameters)
 - \succ We take leading p_T jet, but skip the jet with leading photon among jet constituents

- Jets are clustered with *anti-k_t* algorithm
- Distance between objects in *anti-k*_t algorithm defined as $d_{ij} = \min\left(\frac{1}{k_{ti}^2}, \frac{1}{k_{tj}^2}\right) \frac{\Delta_{ij}^2}{R^2}$, where $\Delta_{ij}^2 = (y_i - y_j)^2 + (\varphi_i - \varphi_j)^2$
- The functionality of the algorithm can be understood by considering an event with a few hard particles and many soft ones
 - If hard particle 1 has no hard neighbours within a distance 2R then we have one perfectly conical jet
 - ► If another hard particle 2 is present such that $R < \Delta_{12} < 2R$ then we have two jets with some overlapping parts
 - > If distance between particles 1 and 2 Δ_{12} < *R* then both formed one jet

Process $qg \rightarrow q\gamma$ cross section ($\sqrt{s} = 27 \text{ GeV}$)

- Expected instantaneous luminosity $10^{32} cm^{-2} s^{-1}$
- For 100 days of work integral luminosity ~ $10^5 nb^{-1}$
- We have enough statistics even for high p_T partons
- For partons with $p_T > 3GeV$ we expect ~ 10^6 events

Full Multiplicity

Charged Multiplicity

RecoJet_Ch_all

MeanPartPt_all

