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We study the transverse single-spin asymmetry (TSSA) in p↑p → J=ψX reaction, incorporating both
transverse momentum and spin effects. To predict production cross section of prompt J=ψ , we use two
different approaches, the color-singlet model and the improved color evaporation model, and show how the
predicted results for TSSAs depend on the choice of hadronization model. For initial-state factorization, we
also consider two options: the standard generalized parton model and the color gauge-invariant version of
it. Estimates for the TSSAs in p↑p → J=ψX process for the conditions of the future Spin Physics Detector
Nuclotron-based Ion Collider fAcility (NICA) experiment are presented for the first time.
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I. INTRODUCTION

The transverse momentum dependent (TMD) parton
distribution functions (PDFs) incorporate information
about the three-dimensional structure of a proton and its
spin properties [1,2]. Among the leading-twist TMD PDFs,
the Sivers function [3,4] is one of the most interesting
functions and it is widely investigated in p↑p → hX
inclusive processes [5,6]. The Sivers function describes
the number density of unpolarized gluons g (or quarks q)
with the intrinsic transverse momentum qT inside a
transversely polarized proton p↑, with the three-momentum
P and the spin polarization vector S,

F↑
g ðx;qTÞ ¼ Fgðx; qTÞ þ

1

2
ΔNF↑

g ðx; qTÞS · ðP̂ × q̂TÞ; ð1Þ

where x is the proton light-cone momentum fraction carried
by the gluon, Fgðx; qTÞ is the unpolarized TMD parton

density, ΔNF↑
g ðx; qTÞ is the Sivers function, qT ¼ jqT j, and

the symbol ð^Þ denotes a unit vector, â ¼ a=jaj.

In the present paper, we are interested in accessing the
gluon Sivers function (GSF) using the TSSA of inclusive
J=ψ production. However, the task of studying gluon
distributions using charmonia is rather challenging theo-
retically. The production of charmonia proceeds in two
stages: first, a cc̄ pair is produced at short distances,
predominantly via gluon-gluon fusion but with a non-
negligible contribution of qq̄- and qg-initiated subpro-
cesses. The second stage is hadronization of the cc̄ pair
into a physical charmonium state, which proceeds essen-
tially nonperturbatively, at large distances (low scales) and
is accompanied by a complicated rearrangement of color
via exchanges of soft gluons between the cc̄ pair and other
colored partons produced in the collision. At present, two
approaches to describe cc̄ hadronization are most popular:
the nonrelativistic QCD (NRQCD) factorization [7] and
(improved) color evaporation model (CEM) [8–10].
In the context of TMD factorization, rigorous results for

heavy-quarkonium physics were obtained only very
recently [11,12], showing that the TMD-factorization for-
mula for quarkonium production will differ from the case of
Drell-Yan pair or Higgs-boson production processes. For
quarkonia, the TMD-factorization formula has to include
additional shape functions with the corresponding evolu-
tion. However, in the present paper, we adopt a simpler
phenomenological approach of generalized parton model
(GPM) which is described in more detail in Sec. II A. In the
standard GPM approach, the Sivers function is assumed to
be process dependent, because the effects of initial-state
interaction (ISI) and final-state interaction (FSI) are fac-
torized into this function. An alternative approach is the
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color-gauge-invariant (CGI) GPM formalism of Refs. [13–
18], which we summarize in Secs. II B and II C. In this
framework, the process-dependent ISIs and FSIs are lifted
from Sivers-like TMD PDF to the coefficient function,
using the one-gluon exchange approximation. Thus, in
CGI-GPM, the results for the Sivers function extracted
from different processes can be directly compared.
The behavior of TSSA in the process p↑p → J=ψX has

been studied recently in Refs. [16,17,19]. In Refs. [16,17],
J=ψ production was treated in a color-singlet approxima-
tion [16] and full NRQCD approach [17], including the
color-octet states, respectively. In case of the color-singlet
mechanism, the CGI-GPM corrections to GPM cross
sections have been included. In Ref. [19], the improved
color evaporation model (ICEM) was used and the authors
investigated the effect of the evolution of TMD PDFs
involved on the asymmetry AN.
The aim of the present study is to provide reasonable

estimates for TSSA effects which can be observed in the
kinematic conditions of the planned Spin Physics Detector
(SPD) experiment at NICA collider [20,21]. We will
compare the estimates for TSSA obtained in GPM and
CGI-GPM frameworks and also explore both the theoreti-
cal approaches for charmonium hadronization—NRQCD
and ICEM. In case of NRQCD, we will show that at small
transverse momenta of the produced charmonium
kTC < mC, the color-singlet mechanism describes data
for prompt J=ψ production and the inclusion of color-
octet terms is not needed at leading order (LO) in αs.
Therefore, for our NRQCD predictions for TSSA within
GPM and CGI-GPM, we include only the color-singlet
states of the final cc̄ pair.
The present paper is organized as follows. In Sec. II, we

present basic cross section formulas of GPM and CGI-
GPM for 2 → 1 and 2 → 2 partonic subprocesses, as well
as the details specific to our NRQCD/color-singlet model
(CSM) and ICEM treatments of charmonium hadroniza-
tion. In Sec. III, we present and discuss numerical results
for the transverse momentum spectra of prompt J=ψ and
TSSA AN in p↑p → J=ψX reactions at PHENIX RHIC and
Spin Physics Detector (SPD) Nuclotron-based Ion Collider
fAcility (NICA). In this section, we also compare our
results with the similar results obtained earlier for PHENIX
RHIC at

ffiffiffi
s

p ¼ 200 GeV in both NRQCD approach [16,17]
and ICEM [19].

II. THEORETICAL FORMALISM

A. GPM and CGI-GPM

The factorization scheme, which is suitable to describe
inclusive observables in hadronic collisions, depends on
hierarchy between the typical hard scale of the process and
the involved transverse momenta. Collinear parton model
(CPM) is used for studies of high-pT production, when
hard scale ðμ ∼ pT ≫ ΛQCDÞ. In such a way, in CPM, we

neglect the transverse momenta of partons initiating the
hard process and the hadronic cross section can be
factorized as convolution of hard coefficients and collinear
PDFs faðx; μFÞ at the factorization scale μF with μF ≃ μ ∼
pT and a ¼ q; q̄; g. In the kinematical domain of CPM, the
transverse momenta of final-state particles ðkTÞ are gen-
erated in the hard scattering of partons and influence small
intrinsic transverse momenta of partons in hadrons (qT),
which originate from nonperturbative effects, which can be
neglected. The typical estimate for average squared intrin-
sic transverse momentum of a parton is hq2

Ti ≃ 1 GeV2 or
even smaller.
If one is interested in the particle production with small

transverse momenta jkT j ≃
ffiffiffiffiffiffiffiffiffi
hq2

Ti
p

≪ μ in a hard process
with the scale μ, the effects of the intrinsic parton motion in
hadrons have to be taken into account. In TMD factoriza-
tion, the hadronic cross section is expressed as a con-
volution of TMD PDFs Faðx; qT; μ; ζÞ and hard partonic
cross section. TMD PDFs evolve with respect to two scales:
μ and ζ, where the latter one is the so-called rapidity scale
related with rapidity divergences [22]. The typical value of
the hard scale μ in charmonium (C) production is given by
the charmonium mass, mC ¼ 3.1–3.7 GeV, so TMD fac-
torization should be used in the region kT ≪ mC. The
region kT ≃mC requires matching with finite-order pertur-
bative corrections and possible nonperturbative power-
suppressed corrections to the TMD term.
The GPM is a simplified version of TMD factorization,

which is generally applied for phenomenological estimates
of various observables in processes for which TMD
factorization has not been rigorously proven yet.
Typically, TMD PDFs in GPM are parametrized by a
simple factorized prescription which is as follows:

Faðx; qT; μFÞ ¼ faðx; μFÞGaðqTÞ; ð2Þ

where faðx; μFÞ is the corresponding collinear PDF. The
dependence on the transverse momentum of a parton is des-
cribed by Gaussian distribution GaðqTÞ¼exp½−q2T=hq2Tia�=
ðπhq2TiaÞ, with the normalization condition

R
d2qTGaðqTÞ¼1.

The effects of TMD evolution with respect to the rapidity
scale [22,23] ζ are neglected, which means that GPM
estimates are applicable only in a narrow range of hard and
rapidity scales ζ ∼ μ. The latter condition is however
always fulfilled in our case, since the scale of the process
of charmonium production at low kTC is given by mC.
Within the GPM, the differential cross section for the

charmonium production in proton-proton collisions can be
written as follows:

dσðpp→CXÞ¼
Z

dx1

Z
d2q1T

Z
dx2

×
Z

d2q2TFgðx1;q1T;μFÞFgðx2;q2T;μFÞdσ̂;

ð3Þ
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where dσ̂ is the partonic cross section for gg → C or gg → C þ g partonic subprocesses. For the 2 → 1-type hard subprocess
gðq1Þ þ gðq2Þ → CðkÞ, one has

dσ̂ðgg → CÞ ¼ ð2πÞ4δð4Þðq1 þ q2 − kÞ jMðgg → CÞj2
2x1x2s

d4k
ð2πÞ3 δþðk

2 −m2
CÞ; ð4Þ

with s ¼ 2P1P2—the squared center-of-mass energy of the pp collision. Integrating out delta functions, one obtains

dσðpp → CXÞ
d2kT

¼ π

s

Z
dx1
x1

Z
d2q1T

Z
dx2
x2

Fgðx1;q1T; μFÞFgðx2;q2T; μFÞjMðgg → CÞj2δðŝ −m2
CÞ; ð5Þ

where ŝ ¼ k2 ¼ ðq1 þ q2Þ2, q2T ¼ kT − q1T , kμ ¼ ðk0;kT; kzÞμ. For the consistency of GPM and to avoid problems with
the gauge invariance of the hard-scattering amplitudes, the four-momenta of the initial-state partons have to be put on mass
shell ðq21 ¼ q22 ¼ 0Þ. Hence, q1;2 read

qμ1 ¼
�
x1

ffiffiffi
s

p
2

þ q2
1T

2
ffiffiffi
s

p
x1

;q1T; x1

ffiffiffi
s

p
2

−
q2
1T

2
ffiffiffi
s

p
x1

�
μ

; ð6Þ

qμ2 ¼
�
x2

ffiffiffi
s

p
2

þ q2
2T

2
ffiffiffi
s

p
x2

;q2T;−x2
ffiffiffi
s

p
2

þ q2
2T

2
ffiffiffi
s

p
x2

�
μ

; ð7Þ

where x1;2 are the proton light-cone momentum fractions carried by the partons

x1 ¼
q01 þ q31ffiffiffi

s
p ; x2 ¼

q02 − q32ffiffiffi
s

p :

As follows from Eqs. (6) and (7),

ŝ ¼ x1x2sþ 2q2
1T − 2jq1T jjkT j cosðϕ1Þ þ

q2
1Tq

2
2T

x1x2s
: ð8Þ

The latter result allows one to integrate out delta function δðŝ −m2
CÞ taking the integral over dx2 in Eq. (5). To perform the

calculation of the transverse momentum spectrum in a fixed rapidity interval, one inserts a Heaviside theta function
implementing the rapidity cut under the sign of the integral (5), while the rapidity of C can be calculated as

y ¼ ln

�
k0 þ k3

mCT

�
; mCT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

C þ k2T

q
; k0 þ k3 ¼ x1

ffiffiffi
s

p þ q22T
x2

ffiffiffi
s

p :

The cross section for the 2 → 2 subprocess gðq1Þ þ gðq2Þ → CðkÞ þ gðq3Þ is given by the formula (3) with

dσ̂ðgg → CgÞ ¼ ð2πÞ4δð4Þðq1 þ q2 − k − q3Þ
jMðgg → CgÞj2

2x1x2s
d3k

ð2πÞ32k0
d4q3
ð2πÞ3 δþðq

2
3Þ: ð9Þ

Replacing q23 → ŝþ t̂þ û −m2
C with t̂ ¼ ðq1 − kÞ2, û ¼ ðq2 − kÞ2, one can remove the integral over d4q3 by the delta

function and obtain

k0
dσ
d3k

¼ dσ
dyd2kT

¼ 1

16π2

Z
dx1

Z
d2q1T

Z
dx2

Z
d2q2TFgðx1;q1T; μFÞFgðx2;q2T; μFÞ

×
jMðgg → CgÞj2

x1x2s
δðŝþ t̂þ û −m2

CÞ; ð10Þ

where
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t̂ ¼ m2
C −

ffiffiffi
s

p
mCTx1e−y −

q2
T1mCTeyffiffiffi

s
p

x1
þ 2jqT1jjkT j cosðϕ1Þ;

û ¼ m2
C −

ffiffiffi
s

p
mCTx2ey −

q2
T2mCTe−yffiffiffi

s
p

x2
þ 2jqT2jjkT j cosðϕ2Þ:

Then one can take the integral over dx2 analytically using the delta function δðŝþ t̂þ û −m2
CÞ. In such a way, no kinematic

approximations are made and the exact 2 → 1 and 2 → 2 kinematics are implemented in the presence of the transverse
momentum of initial-state partons.
Master formulas presented above have been used directly in calculations of prompt J=ψ production in the NRQCD

approach; see Sec. II B for a description of the contributing 2 → 1 and 2 → 2 partonic subprocesses. In the case of ICEM
hadronization model, the cross section is calculated in a slightly different way; see Sec. II C.
In this paper, we study TSSAs, usually denoted by AN, measured in p↑p → CX (C ¼ J=ψ ; χc;ψð2SÞ) inclusive reactions

and defined as

AN ¼ dσ↑ − dσ↓

dσ↑ þ dσ↓
¼ dΔσ

2dσ
; ð11Þ

where ↑;↓ are opposite proton spin orientations perpendicular to the scattering plane in pp center-of-mass frame. The
numerator and denominator of AN read

dΔσ ∝
Z

dx1

Z
d2q1T

Z
dx2

Z
d2q2T ½F̂↑

g ðx1;q1T; μFÞ − F̂↓
g ðx1;q1T; μFÞ�Fgðx2;q2T; μFÞdσ̂ðgg → CXÞ; ð12Þ

dσ ∝
Z

dx1

Z
d2q1T

Z
dx2

Z
d2q2TFgðx1;q1T; μFÞFgðx2;q2T; μFÞdσ̂ðgg → CXÞ; ð13Þ

where F̂↑;↓
g ðx; qT; μFÞ is the distribution of the unpolarized gluon (or quark) in a polarized proton. Following the Trento

conventions [24], the GSF can be introduced as

ΔF̂↑
g ðx1;q1T; μFÞ≡ F̂ð↑Þ

g ðx1;q1T; μFÞ − F̂ð↓Þ
g ðx1;q1T; μFÞ

¼ ΔNF↑
g ðx1;q2

1T; μFÞ cosðϕ1Þ ¼ −2
q1T
Mp

Fg
1Tðx1; q1T; μFÞ cosðϕ1Þ; ð14Þ

and GSF has to satisfy the positivity bound

q1T
Mp

jFg
1Tðx1; q1T; μFÞj ≤ Fgðx1; q1T; μFÞ; ð15Þ

where Mp is the mass of the proton.
We adopt factorized Gaussian parametrizations for both the unpolarized TMD distribution Fgðx; qT; μFÞ and the Sivers

function ΔNF↑
g ðx; q2T; μFÞ,

ΔNF↑
g ðx; q2T; μFÞ ¼ 2NgðxÞFgðx; qT; μFÞhðqTÞ; ð16Þ

NgðxÞ ¼ Ngxαð1 − xÞβ ðαþ βÞαþβ

ααββ
; ð17Þ

hðqTÞ ¼
ffiffiffiffiffi
2e

p qT
M0 e

−q2T=M
02
; ð18Þ

which satisfy the bound (15) for any values of α and β. After introducing the parameter

ρg ¼
M02

M02 þ hq2Tig
; 0 < ρg < 1; ð19Þ
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we write for GSF,

ΔNF↑
g ðx; q2T; μFÞ

¼ 2

ffiffiffiffiffi
2e

p

π
NgðxÞfgðx; μFÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρg
ρg

s
qT

hq2Ti3=2g

e−q
2
T=ρghq2Tig :

ð20Þ
In our numerical calculations, we will use two different
GSFs obtained earlier in Ref. [6], which we call semi-
inclusive deep inelastic scattering (SIDIS1) for brevity, and
in Ref. [25], which we refer to as GSF parametrization by
D’Alesio et al. The corresponding values of the parameters
are presented in Table I.
To introduce the CGI-GPM, let us first recall the

explanation of the Sivers effect, which has been described
for the first time in Ref. [26]. In this paper, it was shown
that Sivers asymmetry in SIDIS process at a leading twist is
a quantum effect generated by exchanges of soft gluons
between ISI or FSI partons produced in a hard process and
the spectator system originating as a remnant of an
incoming hadron. In a standard TMD factorization, these
soft gluons are taken into account within the gauge-
invariant definition of Sivers-like TMD PDF, which con-
tains Wilson lines. The sign of Sivers TMD PDF depends
on the direction of Wilson lines, which can be past or future
pointing, representing the “space-time trajectory” of an
initial-state or struck quark produced, respectively, in Drell-
Yan or SIDIS hard-scattering process. Thus, the Sivers
function in a standard TMD and perhaps in GPM
approaches is process dependent and it is not clear how
to extend factorization for the Sivers effect to the processes
with colored final states, like J=ψ production.
The aim of CGI-GPM [13–18] formalism is to extract the

above-mentioned process dependence from the TMD PDF
to the hard-scattering coefficient. The effects of ISI and FSI
are included in CGI-GPM via one-gluon exchange approxi-
mation [13,16]. In the case of the gluon Sivers effect, this
approximation leads to the appearance of independent
GSFs of f type (FgðfÞ

1T ) and d type (FgðdÞ
1T ) corresponding

to two independent ways of combining three gluons into a
color singlet (Fig. 1). The coupling of additional “eikonal”
gluon from the GSF to the hard process leads only to the
modification of the color structure of the latter one. There is
no four-momentum transfer from the additional gluon to
the hard process, because the Sivers effect comes from the
imaginary part of the loop integral over the momentum of
the exchanged gluon [26], which is saturated by the
contribution of the soft region. Moreover, only the coupling

of the eikonal gluon to the initial-state or observed colored
final-state particles contributes to the spin asymmetry,
while the effects of coupling to unobserved final-state
partons cancel out between the amplitude and the complex-
conjugate amplitude (see, e.g., discussion in Refs. [13,16]).
While arguments above are specific for the one-gluon
exchange approximation, an additional argument in favor
of CGI-GPM is that its hard-scattering coefficients repro-
duce coefficients in the twist-3 collinear approach [13].
In Fig. 1, we collect the corresponding Feynman rules and

prescriptions for calculation of the hard-scattering coefficient
for the numerator (12) of the TSSAwithin CGI GPM. For a
detailed derivation, see, e.g., Ref. [16]. The color projectors
for f- and d-type GSFs are defined as follows:

T c
ab ¼NT ð−ifabcÞ; Dc

ab ¼NDdabc; Qa
ij ¼NQtaij;

ð21Þ

where fabcðdabcÞ is totally the antisymmetric (symmetric)
structure constant of the SUðNcÞ color gauge group, taij—the
generators of SUðNcÞ group in the fundamental representa-
tion, and

NT ¼ 1

NcðN2
c − 1Þ ; ND ¼ Nc

ðN2
c − 4ÞðN2

c − 1Þ ;

NQ ¼ 2

NcðN2
c − 1Þ ; ð22Þ

with Nc ¼ 3.

FIG. 1. Feynman rules for color factors within the CGI-GPM
with the additional eikonal gluon.

TABLE I. Parameters of GSF.

GSF set Ng αg βg ρg hq2Tig, GeV2

SIDIS1 0.65 2.8 2.8 0.687 0.25
D’Alesio et al. 0.25 0.6 0.6 0.1 1.0
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In the following sections, we mostly use the CGI-GPM
hard-scattering coefficients, which already have been
calculated by other authors, in which case we cite the
corresponding reference. However, in Sec. II C, we will
need new (to our knowledge) CGI-GPM hard-scattering
coefficient for gg → cc̄ process with both final-state c
quarks being observed.

B. NRQCD and color-singlet model

In the framework of the NRQCD-factorization approach,
the cross section of charmonium production via a partonic
subprocess aþ b → C þ X is given by a double expansion
in powers of αs and squared relative velocity of heavy
quarks in a bound state v2 as

dσ̂ðaþ b→ CþXÞ ¼
X
n

dσ̂ðaþ b→ cc̄½n� þXÞhOC½n�i;

ð23Þ

where n denotes the set of color, spin, orbital, and total
angular momentum quantum numbers of the cc̄ pair and the
four-momentum of the latter is assumed to be equal to the
one of the physical quarkonium states C. The cross section
dσ̂ðaþ b → cc̄½n� þ XÞ can be calculated in perturbative
QCD as an expansion in αs. The nonperturbative transition
of the cc̄ pair into C is described by the long-distance
matrix elements (LDMEs) hOC½n�i. Color-singlet LDMEs
can be determined from measured decay widths of char-
monia using the known next-to-leading-order (NLO) QCD
result or from calculations in potential models [27]. The
color-octet LDMEs are considered as free parameters
in charmonium production cross sections. Typically,
LDMEs up to next-to-next-to-leading-order (Oðv4Þ) in
v2 scaling are included in NRQCD-factorization calcula-

tions: n ¼ 3Sð1Þ1 , 3Sð8Þ1 , 1Sð8Þ0 , 3Pð8Þ
J if C ¼ J=ψ ;ψ 0 and

n ¼ 3Pð1Þ
J , 3Sð8Þ1 if C ¼ χcJ, where J ¼ 0, 1, 2.

From a general point of view, LDMEs should be
universal and process-independent parameters. However,
in practice, their numerical values strongly depend on the
approach which is used to describe the cc̄-pair production
and data included into the fit. For example, one can
compare the color-octet LDMEs obtained in LO CPM
[28,29], NLO CPM [30], and kT-factorization approach
[31,32]. Nevertheless, the hierarchy expected from veloc-

ity-scaling rules hOC½3Pð1Þ
0 �i ≫ hOC½3Pð8Þ

0 �i, hOC½3Sð1Þ1 �i ≫

hOC½3Pð8Þ
J �i ≫ ðhOC½3Sð8Þ1 �i; hOC½1Sð8Þ0 �iÞ is respected by all

the fits.
We adopt the following values of color-singlet

LDMEs [33]: hOJ=ψ ½3Sð1Þ1 �i ¼ 1.3 GeV3, hOψ 0 ½3Sð1Þ1 �i ¼
6.5 × 10−1 GeV3, and hOχcJ ½3Pð1Þ

0 �i ¼ 8.9 × 10−2 GeV5

and LDMEs for other P-wave color-singlet states are
obtained via the heavy-quark spin-symmetry relation

hOχcJ ½3Pð1Þ
J �i ¼ ð2J þ 1ÞhOχc0 ½3Pð1Þ

0 �i;

which is valid up to Oðv2Þ corrections.
As it will be shown in Sec. III A below, in the framework

of a simplistic GPM-factorization approach described in
Sec. II A, the contributions of only color-singlet subpro-
cesses are actually enough to describe small-kTC cross
section of J=ψ hadroproduction, but to this end it is
important to include both direct and feed-down contribu-
tions. There is no room left numerically for the color-octet
contributions, and therefore we disregard them entirely in
our calculations. This conclusion is perhaps not so surpris-
ing, given the fact that color-octet LDMEs are velocity
suppressed, as it has been discussed above. Hence, from
now on, we will discuss only color-singlet contributions
and “NRQCD” labels in our figures below that actually
refer to the color-singlet model calculations.
The squared LOs in αS amplitudes for 2 → 1 color-

singlet subprocesses in CPM are well known [28],

jAðgþ g → C½3Pð1Þ
0 �j2 ¼ 8

3
π2α2s

hOC½3Pð1Þ
0 �i

M3
; ð24Þ

jAðgþ g → C½3Pð1Þ
1 �j2 ¼ 0; ð25Þ

jAðgþ g → C½3Pð1Þ
2 �j2 ¼ 32

45
π2α2s

hOC½3Pð1Þ
2 �i

M3
: ð26Þ

As it was discussed above, in GPM, these subprocesses
contribute to transverse momentum spectrum because
TMD PDFs are involved.
There are two relevant LOs in αS 2 → 2 partonic

subprocesses: the first one describes the direct production
of J=ψ or ψð2SÞ via a color-singlet intermediate state

cc̄½3Sð1Þ1 �, while in the second one, the cc̄½3Pð1Þ
1 � state is

produced, which hadronizes to χc1 with a subsequent decay
to J=ψ . The squared amplitudes for these partonic sub-
process are [34]

jAðgþ g → C½3Sð1Þ1 � þ gj2 ¼ π3α3s
hOC½3Sð1Þ1 �i

M3

320M4

81ðM2 − t̂Þ2ðM2 − ûÞ2ðt̂þ ûÞ2
× ðM4 t̂2 − 2M2 t̂3 þ t̂4 þM4t̂ û−3M2t̂2ûþ 2t̂3ûþM4û2

− 3M2 t̂û2 þ 3t̂2û2 − 2M2û3 þ 2t̂û3 þ û4Þ; ð27Þ
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jAðgþ g → C½3Pð1Þ
1 � þ gj2 ¼ π3α3s

hOC½3Pð1Þ
1 �i

M5

128M2ðŝ ûðt̂þ ŝÞðûþ t̂ÞÞ2
9ðŝ t̂ðû −M2Þðŝ t̂þŝ ûþt̂ ûÞÞ4 ð−15M

2ŝ2t̂2û2

þ 2ŝ t̂ û ð−M8 þ 5M4ðŝ t̂þŝ ûþt̂ ûÞ þ ðŝ t̂þŝ ûþt̂ ûÞ2Þ
þM2ðŝ t̂þŝ ûþt̂ ûÞ2ðM4 − 4ðŝ t̂þŝ ûþt̂ ûÞÞÞ: ð28Þ

To calculate the feed-down contribution in prompt J=ψ production, we use following branching ratios
which are taken from Ref. [35]: Bðψ 0 → J=ψ þ XÞ ¼ 0.614, Bðχc0 → J=ψ þ γÞ ¼ 0.014, Bðχc1 → J=ψ þ γÞ ¼ 0.343,
and Bðχc2 → J=ψ þ γÞ ¼ 0.19, while BðJ=ψ → μþ þ μ−Þ ¼ 0.05961.
Turning now to the case of CGI-GPM initial-state factorization, we introduce the following notations: jAj2GPM for the

above-described matrix elements of a hard subprocess in the GPM and Hðf=dÞ
CGI for the coefficient function, obtained within

the CGI-GPM factorization prescription. Then, following Ref. [16], one writes down the contribution of the 2 → 1 or 2 → 2

subprocess of production of 3Pð1Þ
J or 3Sð1Þ1 states of the cc̄ pair to the numerator of the TSSA as

FgðfÞ
1T ⊗ HðfÞ

CGI þ FgðdÞ
1T ⊗ HðdÞ

CGI ¼¼ CðfÞ
I þ CðfÞ

Fc

CU
FgðfÞ
1T ⊗ jAj2GPM þ CðdÞ

I þ CðdÞ
Fc

CU
FgðdÞ
1T ⊗ jAj2GPM; ð29Þ

where FgðfÞ
1T and FgðdÞ

1T are the above-mentioned f-type (C-
even) and d-type (C-odd) GSFs, and ⊗ denotes convolu-
tion in the light-cone momentum fraction and transverse
momentum of gluon from the polarized proton. Here CU is
the color factor of the unpolarized cross section, which

corresponds to the usual QCD result, while Cðf=dÞ
I and

Cðf=dÞ
Fc

are modified color factors corresponding to ISI and
FSI in CGI GPM. In case of a color-singlet state of the cc̄
pair, only ISIs (first diagram in Fig. 2) contribute in both

cases 3Sð1Þ1 and 3Pð1Þ
J , so that CðfÞ

Fc
¼ CðdÞ

Fc
¼ 0, while it was

shown in Refs. [13–18],

CðfÞ
I ¼ −

1

2
CU; CðdÞ

I ¼ 0 ð30Þ

for the case of 3Sð1Þ1 final state (2 → 2 process), while

CðfÞ
I ¼ CU; CðdÞ

I ¼ 0 ð31Þ

for 3Pð1Þ
J states (2 → 1 processes). One notices that in both

cases d-type GSF does not contribute, so only f-type GSF
is relevant for a color-singlet model.
In such a way, accounting for the effects of ISI and FSI

with CGI-GPM formalism leads to smaller numerical
values of TSSA in charmonium hadroproduction within
the color-singlet approximation of NRQCD factorization,
as compared to the ordinary GPM.
A comment on the treatment of color-octet contributions

in the CGI-GPM approach of Refs. [17,18] is in order here.
The authors of Refs. [17,18] had to include contributions of
2 → 2 processes to obtain the nonzero effect on the
asymmetry from the color-octet channels. However, e.g.,

the coefficient function for the contribution of gþ g →

cc̄½1Sð8Þ0 � þ g subprocess to the numerator of the asymmetry
[Eq. (A3) of Ref. [18] ] clearly contains nonintegrable
singularities at t̂ → 0 or ŝ → m2

C which due to the nonzero
transverse momentum of initial-state partons will lead to
divergent cross section in GPM. In our opinion, the
appearance of nonregulated divergences in CGI-GPM
deserves further study and we are going to address this

FIG. 2. Example diagrams for contributions to the numerator of TSSA in CGI-GPM. Left panel: ISI for production of 3Sð1Þ1 state.
Middle and right panels: FSI for gg → cc̄ process with both final-state quarks tagged.
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problem in the future. In the numerical calculations of the
present paper, we include only the color-singlet NRQCD
channels, which are free from the above-mentioned
problem.

C. ICEM

The main physical assumption of the ICEM is that all cc̄
pairs with invariant masses below the DD̄ threshold
hadronize to charmonia with some probability, which is
independent from the angular momentum and spin

quantum numbers of the cc̄ pair. In the ICEM [9,10],
the invariant mass of the intermediate charm quark-anti-
quark pair is constrained to be larger than the mass of the
produced charmonium state, mC, instead of using the same
lower limit of integration—2mc, as it was done in the
traditional CEM [8]. As a result, the ICEM describes the
charmonium yields as well as the ratio of ψð2SÞ over J=ψ
better than the old CEM. The partonic cross section,
differential in cc̄-invariant mass, is related to the well-
known total cross section of production of cc̄ pairs as a
function of the partonic squared center-of-mass energy ŝ,

σ̂ðŝ; gg → cc̄Þ ¼ πα2S
3ŝ

��
1þ wþ w2

16

�
ln

�
1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − w
p

1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p
�
−
�
7

4
þ 31

16
w

� ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p �
;

σ̂ðŝ; qq̄ → cc̄Þ ¼ 8πα2S
27ŝ

�
1þ w

2

� ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p
; ð32Þ

with w ¼ 4m2
c=ŝ as follows:

dσ̂cc̄

dM2
¼ σ̂ðŝ; ab → cc̄Þδðŝ −M2Þ; ð33Þ

so that the GPM-factorization formula for the production of cc̄ pairs with invariant massM and total three-momentum k via
gluon-gluon fusion can be written as

dσcc̄

dM2d3k
¼

Z
dx1

Z
d2q1T

Z
dx2

Z
d2q2TFgðx1; q1T; μFÞFgðx2; q2T; μFÞσ̂ðŝ; gg → cc̄Þ

× δðŝ −M2Þδð3Þðq1 þ q2 − kÞ; ð34Þ

where the invariant ŝ ¼ k2 ¼ ðq1 þ q2Þ2 can be represented as in Eq. (8). Finally, for the differential cross section of
charmonium C production in proton-proton collision in ICEM, one has

dσC

d3k
¼ FC ×

Z
4m2

D

m2
C

dM2
dσcc̄

dM2d3k
; ð35Þ

where FC is the process-independent hadronization probability to the charmonium state C. Then one integrates out q2T and
M2 using delta functions to find

dσC

d3k
¼ FC ×

Z
dx1

Z
d2q1T

Z
dx2Fgðx1; q1T; μFÞFgðx2; q2T; μFÞσ̂ðŝ; gg → cc̄Þ

× δðq31 þ q32 − k3Þ½θðŝ −m2
CÞ − θðŝ − 4m2

DÞ�: ð36Þ

In this equation, the integral over dx2 can also be removed by the delta function δðq31 þ q32 − k3Þ, thus obtaining the master
formula for numerical calculations. The quark-antiquark annihilation channel for the cc̄-pair production has been
incorporated into the calculation in a similar way.
In case of CGI-GPM factorization, the numerator of the TSSA (12) reads as

FgðfÞ
1T ⊗ σ̂ðfÞCGIðŝ; gg → cc̄Þ þ FgðdÞ

1T ⊗ σ̂ðdÞCGIðŝ; gg → cc̄Þ; ð37Þ

where σ̂ðf=dÞCGI ðŝ; gg → cc̄Þ is the f-/d-type coefficient function of CGI-GPM integrated over the phase space of the final-state
cc̄ pair with the fixed invariant mass ŝ as in Eq. (32). Since in the ICEM both c and c̄ quarks in the final state are observed,
the corresponding hard-scattering coefficient is different from the coefficient for D-meson TSSA, given, e.g., in Ref. [36].
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To obtain new coefficient functions, we take into account interactions of eikonal gluon with the initial-state gluon coming
from the unpolarized proton as well as with the final-state c̄ and c quarks (middle and right diagrams of Fig. 2). The f-=d-
type hard-scattering coefficients thus obtained have the form

HðfÞ
CGIðgg → cc̄Þ ¼ 8π2α2s

NcðN2
c − 1Þt̃2ũ2 ð4m

4
cðt̃þ ũÞ2 þ 4m2

ct̃ ũðt̃þ ũÞ − t̃ ũ ðt̃2 þ ũ2ÞÞ;

HðdÞ
CGIðgg → cc̄Þ ¼ Nc

t̃ − ũ
ŝ

HðfÞ
CGIðgg → cc̄Þ;

HCGIðqq̄ → cc̄Þ ¼ −HCGIðq̄q → cc̄Þ ¼ 8π2α2sðN2
c þ 1Þ

ŝ2N2
c

ð2m2
cŝþ t̃2 þ ũ2Þ;

where t̃ ¼ t̂ −m2
c and ũ ¼ û −m2

c. Integrating these coefficient functions over the phase space of the final state with the
fixed cc̄-invariant mass ŝ, one obtains

σ̂ðfÞCGIðŝ; gg → cc̄Þ ¼ πα2S
48ŝ

��
w2

2
− w − 1

�
ln

�
1 − w=2þ ffiffiffiffiffiffiffiffiffiffiffi

1 − w
p

1 − w=2 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p
�
þ 2ð1þ wÞ

ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p �
; ð38Þ

σ̂ðdÞCGIðŝ; gg → cc̄Þ ¼ 0; ð39Þ

σ̂CGIðŝ; qq̄ → cc̄Þ ¼ 10πα2S
27ŝ

�
1þ w

2

� ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p
: ð40Þ

It is interesting that the integrated hard-scattering coeffi-
cient for d-type GSF is equal to zero similarly to the case of
NRQCD, so that in both of our models, a heavy-quarko-
nium TSSA is sensitive only to f-type GSF.
To obtain prompt-J=ψ production spectra, we take into

account direct as well as feed-down contributions from
decays of χcJ and ψð2SÞ states. At the stage of numerical
calculation in ICEM, we put mc ¼ 1.2 GeV and charmo-
nium masses are taken from PDG tables [35]: mJ=ψ ¼
3.096 GeV,mψð2SÞ ¼ 3.686GeV,mχc0¼3.415GeV,mχc1 ¼
3.510 GeV, and mχc2 ¼ 3.556 GeV.

III. NUMERICAL RESULTS

A. PHENIX RHIC

To begin with, we compare the theoretical predictions
obtained in the NRQCD-factorization approach with the
recent experimental data for the transverse momentum
spectra of prompt J=ψ mesons, measured by the
PHENIX RHIC experiment [37]. In our NRQCD calcu-
lations, we take the charm quark mass asmc ¼ mC=2, while
in the ICEM calculations, it is kept fixed at mc ¼ 1.2 GeV.
Also, in the case of feed-down production, the kinematic
effect of the mass splittings between the charmonium states
turns out to be significant and we take into account the
momentum shift between the high-mass charmonium state
and the final J=ψ meson as it was done, e.g., in
Ref. [38]: kTJ=ψ ¼ ðmJ=ψ=mCÞkTC.
The phenomenological analysis of intrinsic transverse

momentum of partons in proton in LO and NLO of CPM

[39] demonstrates that for gluon one has hq2Ti ≃ 1 GeV2

and the same estimation was obtained for J=ψ production
in GPM [16].
Throughout our analysis, the renormalization and fac-

torization scales have been identified and chosen to be

μF ¼ μR ¼ ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2T þm2

C

q
, where ξ varied between ξ ¼ 1=2

and ξ ¼ 2 about its default value ξ ¼ 1 to estimate the
theoretical uncertainty due to the freedom in the choice of
scales. The resulting errors are indicated as shaded bands in
our figures; however, they mostly cancel out in asymme-
tries AN .
The direct production of J=ψ mesons at the Oðv0Þ

includes only contributions from CSM (27). The color-

octet states 3Pð8Þ
0 and 3Pð8Þ

2 contribute at Oðv2Þ. The

intermediate state 3Pð8Þ
1 does not contribute if the initial-

state partons are on mass shell. The color-octet contribu-

tions 3Sð8Þ0 and 3Sð8Þ1 are suppressed by even higher powers
of v, so it is natural to expect them to be negligible at small
kTC < mC. In fact, similarly to the results of Ref. [16], we
found that taking into account only the color-singlet
production mechanism, the good description of prompt
J=ψ transverse momentum spectra at small kTJ=ψ < mJ=ψ ,
i.e., in the region of applicability of TMD factorization, can
be achieved in the GPM; see the left panel of Fig. 3. Also,
our NRQCD calculation leads to the total cross section
ratios of direct and feed-down contributions in a good
agreement with the experimental data of Ref. [37]; see
Table II. However, it should be noted that the relative feed-
down contributions of χcJ states are different in two
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models: in the CSM calculation, χc2 feed-down contributes
the most, while in ICEM, the χc1 state is dominant (Fig. 3).
We should emphasize that our calculations are different

from calculations of Ref. [16] in the respect that we
consistently take into account feed-down contributions
from ψð2SÞ and χcJ states, while in Ref. [16] they were
added very crudely, by multiplication of the direct cross
section by a factor ≃1.4. Such treatment of feed-down is not
consistent with the color-singlet model, since the direct
J=ψ and ψð2SÞmesons are produced in 2 → 2 processes in
this model, while χcJ mesons are produced in 2 → 1
processes with significantly different kTC behavior. As
one can see from the left panel of Fig. 3, feed-down
subprocesses contribute mainly at small transverse
momenta in this model. Furthermore, to describe data at
large transverse momentum kTJ=ψ , OðkTJ=ψ=mJ=ψ Þ power
corrections are generated in hard scattering by the emission
of additional partons, and the inclusion of color-octet
contributions in direct charmonium production is abso-
lutely necessary.
Very similar predictions for the transverse momentum

spectrum can be obtained in the framework of ICEM; see
the right panel of Fig. 3. The values of hadronization

probabilities used are FJ=ψ ¼ 0.02, Fχc1 ¼ Fχc2 ¼ 0.06,
and Fψð2SÞ ¼ 0.08. These were obtained via the fit of the
total cross section of J=ψ production at PHENIX and the
above-mentioned experimentally measured fractions of
J=ψ feed-down contribution form ψð2SÞ and χcJ decays
(Table II). These values of hadronization probabilities are
numerically close to the values obtained in Ref. [10] by the
fit of the LHC data in the kT-factorization approach for the
cc̄-pair production.
Our estimations for TSSAs at PHENIX kinematic con-

ditions, obtained in the GPM accompanied by NRQCD-
factorization approach or ICEM, are shown by thin histo-
grams in Fig. 4 and Figs. 5 and 6 as functions of xF and
transverse momentum, respectively, together with the
recent experimental data from Ref. [40]. We conclude that
within the standard GPM initial-state factorization, the
parametrization for the Sivers function by D’Alesio et al. is
marginally consistent with the experimental data for both
hadronization models, while SIDIS1 parametrization pre-
dicts too large effects at positive xFψ and is essentially ruled
out for the case of ordinary GPM initial-state factorization.
The TSSA results for the CGI-GPM initial-state factori-

zation are presented in the same Figs. 4–6 by thick
histograms. One can see that the discrepancy between
the predictions of the CGI-GPM with the SIDIS1 para-
metrization and experimental data is significantly reduced,
rendering it to be reasonably consistent with the exper-
imental data. Another feature of CGI-GPM, evident from
Figs. 4–6, is the change of the sign of the TSSA predicted
in CGI-GPM relatively to the ordinary GPM.

B. SPD NICA

In this section, we present our predictions for the J=ψ
transverse momentum spectrum and TSSA in the kinematic

TABLE II. The relative contributions of direct and feed-down
production within NRQCD and ICEM. Experimental data of the
PHENIX Collaboration for

ffiffiffi
s

p ¼ 200 GeV are from [37].ffiffiffi
s

p
Model/source of data σdirect∶σχc→J=ψ∶σψð2SÞ→J=ψ

24 GeV
NRQCD 0.58∶0.39∶0.03
ICEM 0.68∶0.25∶0.07

200 GeV
NRQCD 0.61∶0.34∶0.05
ICEM 0.61∶0.30∶0.09

200 GeV PHENIX Collaboration 0.58∶0.32∶0.10

FIG. 3. Differential cross section of prompt J=ψ production as a function of transverse momentum at
ffiffiffi
s

p ¼ 200 GeV, jyj < 0.35. The
theoretical results are obtained in GPM with hq2Ti ¼ 1 GeV2. Left panel: NRQCD-factorization prediction with only color-singlet
channels included. Right panel: ICEM prediction. Experimental data are from Ref. [37].
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conditions of a planned SPD NICA experiment in proton-
proton collisions with

ffiffiffi
s

p ¼ 24 GeV. The SPD is expected
to be an almost 4π-geometry detector [20,21,41];
thus, a relatively wide coverage in rapidity jyj < 3 can
be achieved.
As for kTJ=ψ spectrum, the GPM calculations, in both

NRQCD factorization and ICEM, lead to results consistent
with NRQCD predictions of parton Reggeization approach
[42] at a small transverse momentum, while the latter

predictions are in agreement with the NLO NRQCD
predictions of the collinear parton model [43] at high
kTJ=ψ , as one can see in the left panel of Fig. 7. Predictions
of NRQCD and ICEM approaches for kTJ=ψ spectrum are
also remarkably consistent with each other, but ICEM
prediction has a smaller scale uncertainty (see the right
panel of Fig. 7) because the squared matrix element of the
hard process in ICEM is of Oðα2sÞ while for NRQCD
approach it is of Oðα3sÞ. The relative contributions of direct

FIG. 5. NRQCD predictions for TSSA AJ=ψ
N within the GPM (thin histograms) and CGI-GPM (thick histograms) as a function of J=ψ

transverse momentum at
ffiffiffi
s

p ¼ 200 GeV. The theoretical results are obtained with SIDIS1 [6] (dashed lines) and D’Alesio et al. [25]
(solid lines) parametrizations of GSFs. Left panel: backward production ð−2.2 < y < −1.2Þ. Right panel: forward production
ð1.2 < y < 2.2Þ. Experimental data are from Ref. [40].

FIG. 4. TSSA AJ=ψ
N as function of xF at

ffiffiffi
s

p ¼ 200 GeV within the GPM (thin histograms) and CGI-GPM (thick histograms). The
theoretical results are obtained with SIDIS1 [6] (dashed histograms) and D’Alesio et al. [25] (solid histograms) parametrizations of
GSFs. Experimental data are from Ref. [40]. Left panel: NRQCD final-state factorization. Right panel: ICEM final-state factorization.
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and feed-down production at the energy
ffiffiffi
s

p ¼ 24 GeV are
given in Table II and they turn out to be consistent with the
PHENIX data. Thus, we conclude that we can safely
perform predictions for TSSA at NICA energies.
Estimates for TSSA at SPD NICA experiment computed

within NRQCD and ICEM approaches under GPM initial-

state factorization assumption are shown in Figs. 8 and 9,
respectively, for the SIDIS1 [6] and D’Alesio et al. [25]
parametrizations for GSF. We find that for standard GPM
initial-state factorization, SIDIS1 [6] predicts gigantic
values for asymmetries at NICA energies—up to 60%
(Fig. 8). However, such big effects can hardly be expected

FIG. 7. Prompt J=ψ differential cross section as a function of J=ψ transverse momentum at
ffiffiffi
s

p ¼ 24 GeV, jyj < 3. Left panel: the
GPM results with hq2Ti ¼ 1 GeV2 are shown by the dash-dotted (NRQCD) and dash-double-dotted (ICEM) histograms. Solid and
dashed histograms with uncertainty bands are parton Reggeization approach [42] and NLO CPM [43] predictions, respectively. Right
panel: the GPM predictions in NRQCD (solid histogram with light green uncertainty band) and ICEM (dashed histogram with dark-
green uncertainty band) approaches with their uncertainty bands shown.

FIG. 6. ICEM predictions for TSSA AJ=ψ
N within the GPM (thin histograms) and CGI-GPM (thick histograms) as a function of J=ψ

transverse momentum at
ffiffiffi
s

p ¼ 200 GeV. The theoretical results are obtained with SIDIS1 [6] (dashed lines) and D’Alesio et al. [25]
(solid lines) parametrizations of GSFs. Left panel: backward production ð−2.2 < y < −1.2Þ. Right panel: forward production
ð1.2 < y < 2.2Þ. Experimental data are from Ref. [40].
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to appear, since this parametrization contradicts PHENIX
data, when GPM is used. GPM predictions with D’Alesio
et al. [25] parametrization (Fig. 9) look more realistic and
they are quite robust against the choice of J=ψ -formation
model. Measurable asymmetries up to 5% for the xFψ
spectrum and up to 2% for kTJ=ψ spectrum are predicted.
Our results obtained using CGI-GPM initial-state fac-

torization are shown in Figs. 10 and 11 for SIDIS1 [6] and
D’Alesio et al. [25] parametrizations, correspondingly.
Similarly to the case of PHENIX kinematics discussed
above, the smaller absolute values of TSSAs of charmo-
nium production are predicted within the CGI-GPM
factorization in comparison to the usual GPM factorization.

Also, in Figs. 10 and 11, within the CGI-GPM+CSM
model we observe a sign change of AN for pT ≈ 1 GeV,
similar to observations in Ref. [18]. This sign change
happens mostly due to a negative color factor in Eq. (30)
and a large contribution of direct J=ψ production (see
Table II). Another interesting observation is that ICEM
predicts only negative values for the TSSA within CGI-
GPM, because the integrated coefficient function (38) is
negative for 0 ≤ w ≤ 1. Finally, from Figs. 10 and 11, one
can see that the CSM and the ICEM predict values of the
TSSA opposite in sign for SPD NICA kinematic condi-
tions. This potentially allows to discriminate between these
two approaches of hadronization within the CGI-GPM, if

FIG. 9. Comparison of predictions in GPM for TSSA AJ=ψ
N as a function of xF (left panel) and transverse momentum (right panel) atffiffiffi

s
p ¼ 24 GeV in NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The D’Alesio et al. [25] parametrization of
GSFs is used.

FIG. 8. Comparison of predictions in GPM for TSSA AJ=ψ
N as a function of xF (left panel) and transverse momentum (right panel) atffiffiffi

s
p ¼ 24 GeV in NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The SIDIS1 [6] parametrization of GSFs
is used.
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the energy scan from
ffiffiffi
s

p ¼ 10 to 27 GeV is performed,
allowing to disentangle between the effects of the initial-
and final-state factorization.

IV. CONCLUSIONS

In the present paper, we performed a phenomenological
analysis of the gluon Sivers function contribution to the
transverse TSSA of prompt J=ψ production within
NRQCD factorization (essentially the color-singlet model
in our case) and ICEM for the description of J=ψ
formation, employing both state-of-the-art initial-state fac-
torization models: GPM and CGI-GPM. The goal of our
analysis was to make predictions for TSSA in the kinematic

conditions of a planned SPD NICA experiment. We found
that within the standard GPM initial-state factorization the
SIDIS1 parametrization [6] luon Sivers function contradicts
PHENIX data, while parametrization of D’Alesio et al. [25]
leads to reasonable predictions for magnitude, J=ψ trans-
verse momentum, and xFψ dependence of the asymmetry
with jAN j≲ 2–3% (Fig. 9). Within the CGI-GPM initial-
state factorization, the contradiction of SIDIS1 [6] para-
metrization with PHENIX data was eliminated, and it
predicted jAN j≲ 5% − 10% at SPD NICA kinematics
(Fig. 10). Hence, the observation of sizable transverse
TSSA in inclusive J=ψ production did not contradict the
existing experimental data and their theoretical interpreta-
tion within a wide range of J=ψ formation and initial-state

FIG. 11. Comparison of predictions in CGI-GPM for TSSA AJ=ψ
N as a function of xF (left panel) and transverse momentum (right

panel) at
ffiffiffi
s

p ¼ 24 GeV in NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The D’Alesio et al. [25]
parametrization of GSFs is used.

FIG. 10. Comparison of predictions in CGI-GPM for TSSA AJ=ψ
N as a function of xF (left panel) and transverse momentum (right

panel) at
ffiffiffi
s

p ¼ 24 GeV in NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The SIDIS1 [6] parametrization of
GSFs is used.
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factorization models. In any case, measurements at SPD
NICAwill significantly constrain our knowledge about the
gluon Sivers function in a proton.
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