2024. Том 30, № 1. С. 94–109 2024, vol. 30, по. 1, pp. 94–109

С О Научная статья

DOI: 10.18287/2541-7525-2024-30-1-94-109

УДК 539.126.4

Дата: поступления статьи: 23.11.2023 после рецензирования: 26.12.2023 принятия статьи: 28.02.2024

А.В. Карпишков

Самарский национальный исследовательский университет имени академика С.П. Королева, г. Самара, Российская Федерация E-mail: karpishkoff@gmail.com. ORCID: https://orcid.org/0000-0003-0762-5532 *B.A. Canees* Самарский национальный исследовательский университет имени академика С.П. Королева, г. Самара, Российская Федерация E-mail: saleev@samsu.ru. ORCID: https://orcid.org/0000-0003-0505-5564 *K.K. Шиляев* Самарский национальный исследовательский университет имени академика С.П. Королева, г. Самара, Российская Федерация E-mail: saleev@samsu.ru. ORCID: https://orcid.org/0000-0003-0505-5564 *K.K. Шиляев* Самарский национальный исследовательский университет имени академика С.П. Королева, г. Самара, Российская Федерация E-mail: kirill.k.shilyaev@gmail.com. ORCID: https://orcid.org/0009-0005-0531-883X

РОЖДЕНИЕ ПОЛЯРИЗОВАННЫХ J/ ψ НА КОЛЛАЙДЕРЕ NICA В НРКХД И ОБОБЩЕННОЙ ПАРТОННОЙ МОДЕЛИ¹

АННОТАЦИЯ

В статье рассмотрено рождение J/ψ и ψ' мезонов в рамках нерелятивистской квантовой хромодинамики и обобщенной партонной модели. Из имеющихся экспериментальных данных ($\sqrt{s} = 200 \ \Gamma$ эВ и $\sqrt{s} = 19.4 \ \Gamma$ эВ) по рождению этих состояний чармония извлечены октетные непертурбативные матричные элементы и средние значения квадратов поперечных импульсов начальных партонов, которые далее использованы для предсказания сечения рождения неполяризованных чармониев и поляризации J/ψ и ψ' при энергии $\sqrt{s} = 27 \ \Gamma$ эВ ускорителя NICA.

Ключевые слова: физика высоких энергий; квантовая хромодинамика; чармоний; спин; поляризация; нерелятивистская квантовая хромодинамика; коллинеарная партонная модель; обобщенная партонная модель; SPD NICA.

Цитирование. Карпишков А.В., Салеев В.А., Шиляев К.К. Рождение поляризованных J/ψ на коллайдере NICA в НРКХД и обобщенной партонной модели // Вестник Самарского университета. Естественнонаучная серия / Vestnik of Samara University. Natural Science Series. 2024. Т. 30, № 1. С. 94–109. DOI: http://doi.org/10.18287/2541-7525-2024-30-1-94-109.

Информация о конфликте интересов: авторы и рецензенты заявляют об отсутствии конфликта интересов.

© Карпишков А.В., Салеев В.А., Шиляев К.К., 2024

Антон Витальевич Карпишков — кандидат физико-математических наук, старший преподаватель кафедры общей и теоретической физики, Самарский национальный исследовательский университет имени академика С.П. Королева, 443086, Российская Федерация, г. Самара, Московское шоссе, 34.

Владимир Анатольевич Салеев — доктор физико-математических наук, профессор кафедры общей и теоретической физики, Самарский национальный исследовательский университет имени академика С.П. Королева, 443086, Российская Федерация, г. Самара, Московское шоссе, 34.

Кирилл Константинович Шиляев — магистрант кафедры общей и теоретической физики, Самарский национальный исследовательский университет имени академика С.П. Королева, 443086, Российская Федерация, г. Самара, Московское шоссе, 34.

¹Работа выполнена при поддержке гранта ОИЯИ.

Введение

Экспериментальное исследование процессов рождения тяжелых кваркониев дает уникальные возможности для изучения относительной роли жестких процессов, описываемых в рамках теории возмущений квантовой хромодинамики (КХД), и непертурбативных моделей адронизации. Рождение поляризованных состояний J/ψ мезонов является прецизионным тестом для моделей, описывающих адронизацию тяжелых кварков в кварконий: модели цветовых синглетов (МЦС) [1], нерелятивистской КХД (НРКХД) [2] и модели испарения цвета (МИЦ) [3]. Существующие экспериментальные данные по рождению поляризованных J/ψ получены в протон-протонных и антипротон-протонных столкновениях при высоких энергиях от $\sqrt{s} = 200$ ГэВ [4] до $\sqrt{s} = 1.96$ ТэВ [5] и $\sqrt{s} = 13$ ТэВ [6]. Удовлетворительного описания данных не получено ни в одной из моделей адронизации [7]. В этой связи представляет интерес изучение рождения поляризованных J/ψ при энергиях коллайдера NICA, $\sqrt{s} = 27$ ГэВ [8] и теоретические предсказания для спектров поляризованных J/ψ мезонов, полученных в различных подходах факторизации и моделях адронизации. В работе [9] были сделаны предсказания в модели адронизации HPKXД, выполненные в коллинеарной партонной модели [10] и подходе реджезации партонов [11]. В данной статье мы изучаем рождение поляризованных J/ψ в обобщенной партонной модели (ОПМ) и HPKXД впервые.

1. Неколлинеарная модель факторизации

Стандартным методом рассмотрения партонных подпроцессов и способом факторизации сечения жесткого адронного процесса является коллинеарная партонная модель (КПМ), имеющая известный ряд недостатков, в частности — расходимость сечения в области малых поперечных импульсов рождающейся частицы. Один из способов включить в описание область малых импульсов — это подход TMD-факторизации (transverse-momentum-dependence) [12], в котором подразумевается, что начальные партоны обладают ненулевыми поперечными компонентами импульсов. Область применения строгой TMD-факторизации ограничивается малыми значениями поперечных импульсов чармония $p_T \ll \mu_F$, где μ_F — энергетический масштаб факторизации партонного подпроцесса.

ОПМ можно назвать феноменологической реализацией идеи TMD-факторизации. Если в КПМ импульсы начальных партонов описываются как продольные компоненты импульсов летящих друг навстречу другу протонов, то в ОПМ вводятся в рассмотрение ненулевые поперечные компоненты импульсов начальных партонов.

Описывая столкновение протонов с импульсами p_1 и p_2 , обозначим импульсы партонов в соответствующих протонах как q_1 и q_2 . Будем явно выделять их поперечные компоненты q_{1T} , q_{2T} , тогда импульсы начальных партонов могут быть записаны в виде

$$q_1^{\mu} = x_1 p_1^{\mu} + y_1 p_2^{\mu} + q_{1T}^{\mu}, \qquad \qquad q_2^{\mu} = x_2 p_2^{\mu} + y_2 p_1^{\mu} + q_{2T}^{\mu}, \qquad \qquad q_{iT}^{\mu} = (0, \vec{q}_{iT}, 0), \qquad \qquad i = 1, 2,$$

где x и y — это доли импульсов протонов. Здесь ради сохранения калибровочной инвариантности (то есть выполнения условия $q_1^2 = q_2^2 = 0$) в импульсы партонов искусственно добавлены слагаемые, пропорциональные импульсам летящих им навстречу протонов. Условие калибровочной инвариантности требует, чтобы начальные партоны были на массовой поверхности, что позволяет найти выражения для долей импульса y:

$$y_i = \frac{t_i}{sx_i},$$
 $t_i = \vec{q}_{iT}^2,$ $i = 1, 2.$

Компоненты импульсов q_1, q_2 могут быть представлены следующим образом:

$$\begin{split} q_1^{\mu} &= \left(\frac{x_1\sqrt{s}}{2} + \frac{t_1}{2\sqrt{s}x_1}, \vec{q}_{1T}, \frac{x_1\sqrt{s}}{2} - \frac{t_1}{2\sqrt{s}x_1}\right)^{\mu}, \\ q_2^{\mu} &= \left(\frac{x_2\sqrt{s}}{2} + \frac{t_2}{2\sqrt{s}x_2}, \vec{q}_{2T}, -\frac{x_2\sqrt{s}}{2} + \frac{t_2}{2\sqrt{s}x_2}\right)^{\mu}. \end{split}$$

Сечение процесса в рамках подхода КПМ, согласно теореме о факторизации, может быть представлено как произведение сечения жесткого партонного подпроцесса и партонных функций распределения (ПФР), которые описывают вероятность партона иметь ту или иную долю импульса x. Строго эта теорема доказана для КПМ, но не для ОПМ [12], однако используется для факторизации сечения и для процесса рождения чармония в столкновении протонов записывается в виде

$$d\sigma(pp \to \mathcal{C}X) = \int dx_1 \int d^2 q_{1T} F_1(x_1, \mu_F^2, q_{1T}) \int dx_2 \int d^2 q_{2T} F_2(x_2, \mu_F^2, q_{2T}) \, d\hat{\sigma},$$

где $d\hat{\sigma}$ —сечение жесткого партонного подпроцесса, которое соответственно для подпроцессов $2 \rightarrow 1$ и $2 \rightarrow 2$ выражается следующим образом:

$$\begin{split} d\hat{\sigma} \left(ab \to \mathcal{C}\right) &= (2\pi)^4 \delta^{(4)} \left(q_1 + q_2 - k_1\right) \frac{|\mathcal{M}|^2}{I} \frac{d^3 k_1}{(2\pi)^3 2k_{10}}, \\ d\hat{\sigma} \left(ab \to \mathcal{C}d\right) &= (2\pi)^4 \delta^{(4)} \left(q_1 + q_2 - k_1 - k_2\right) \frac{\overline{|\mathcal{M}|^2}}{I} \frac{d^3 k_1}{(2\pi)^3 2k_{10}} \frac{d^3 k_2}{(2\pi)^3 2k_{20}}, \end{split}$$

здесь k_i — импульсы конечных частиц, I — потоковый фактор, а $\overline{|\mathcal{M}|^2}$ — усредненный по конечным спиновым и цветовым состояниям и суммированный по начальным квадрат модуля амплитуды партонного подпроцесса. Партонные функции распределения $F(x, \mu_F^2, q_T)$ в ОПМ-факторизации представляются в форме произведения не зависящих от поперечного импульса коллинеарных партонных распределений и множителей, включающих данную зависимость:

$$F(x,\mu_F^2,q_T) = f(x,\mu_F^2)G(q_T),$$

используемый нами анзац для функции $G(q_T)$ имеет гауссову форму с соответствующим нормировочным условием [13]:

$$G(q_T) = \frac{e^{-q_T^2/\langle q_T^2 \rangle}}{\pi \langle q_T^2 \rangle}, \qquad \int G(q_T) d^2 q_T = 1.$$

Значение феноменологического параметра $\langle q_T^2 \rangle$, имеющего смысл среднего значения квадрата поперечного импульса начальных партонов, традиционно берется равным около 1 ГэВ² [14], мы же, исходя из зависимости величины $\langle q_T^2 \rangle$ от энергии столкновения, извлечем в дальнейшем его значение из экспериментальных данных.

2. Нерелятивистская квантовая хромодинамика

Основная идея нерелятивистской квантовой хромодинамики (НРКХД) состоит в разложении волновой функции тяжелого кваркония в ряд по степеням малого параметра, роль которого выполняет относительная скорость конституентных кварков v [2]. Соотношение между кинетической и потенциальной энергией, которая для достаточно больших масс кваркония M подавляется членом, пропорциональным α_s/r , показывает, что относительная скорость v пропорциональна сильной константе связи α_s , которая в свою очередь с ростом M логарифмически уменьшается, так как $\alpha_s \sim 1/\ln M$. Так что для чармония, для которого $v^2 \approx 0.3$, возможно введение системы масштабов, характеризующих состояния кваркония с определенным набором квантовых чисел через значения специфических динамических величин [15]. Так, значения массы кваркония M (характеризующее энергию основного состояния), трехмерного импульса Mv (обратно пропорционального размеру основного состояния) и кинетической энергии с точностью до числового множителя Mv^2 (которая определяет величину расщепления между уровнями радиального и углового возбуждений) удовлетворяют неравенству $M^2 \gg (Mv)^2 \gg (Mv^2)^2$ и позволяют реализовать разложение волновой функции основного состояния чармония

$$|J/\psi\rangle = \mathcal{O}(v^0)|c\bar{c}[{}^3S_1^{(1)}]\rangle + \mathcal{O}(v^1)|c\bar{c}[{}^3P_J^{(8)}]g\rangle + \mathcal{O}(v^2)|c\bar{c}[{}^3S_1^{(1,8)}]gg\rangle + \mathcal{O}(v^2)|c\bar{c}[{}^1S_0^{(8)}]g\rangle + \dots$$

Если ограничиться лишь слагемым лидирующего по v порядка, то в итоговое сечение внесет вклад только рождение синглетных по цвету состояний чармония, данное приближение носит название модели цветовых синглетов (МЦС).

Подход НРКХД также позволяет осуществить факторизацию жесткого сечения [2], которое распадается на произведение сечения рождения кварк-антикваркой пары в некотором состоянии, определяемом соответствующим набором квантовых чисел, и непертурбативного матричного элемента (HMЭ), отвечающего за адронизацию кварк-антикваркой пары в кварконий (здесь c обозначает очарованный кварк, а суммирование проводится по фоковским состояниям, обозначенным для краткости n):

$$d\hat{\sigma}(ab \to \mathcal{C}X) = \sum_{n} d\hat{\sigma}(ab \to c\bar{c}[n]X) \langle \mathcal{O}^{\mathcal{C}}[n] \rangle / (N_{\rm col}N_{\rm pol}),$$

где $N_{\rm col} = 2N_c$ для синглетных состояний, $N_{\rm col} = N_c^2 - 1$ для октетных и $N_{\rm pol} = 2J + 1$ ($N_c = 3 -$ число учитываемых цветов, J -полный момент кварк-антикварковой пары). НМЭ синглетных состояний могут быть получены в потенциальных моделях тяжелых кваркониев [16], они связаны со значениями волновой функции чармония или ее производной в нуле:

$$\langle \mathcal{O}^{\mathcal{C}}[{}^{3}S_{1}^{(1)}] \rangle = 2N_{c}(2J+1)|\Psi(0)|^{2}, \qquad \langle \mathcal{O}^{\mathcal{C}}[{}^{3}P_{J}^{(1)}] \rangle = 2N_{c}(2J+1)|\Psi'(0)|^{2}.$$

Подобный подход не применим к октетным НМЭ, значения которых извлекаются из экспериментальных данных.

Вычисление амплитуд в НРКХД осуществляется с помощью последовательности проецирований. Проекторы на состояния со значениями спина 0 и 1 имеют вид [17]

$$\Pi_0 = \frac{1}{\sqrt{8m_c^3}} \left(\frac{\hat{P}}{2} - \hat{q} - m_c\right) \gamma^5 \left(\frac{\hat{P}}{2} + \hat{q} + m_c\right), \qquad \Pi_1^\mu = \frac{1}{\sqrt{8m_c^3}} \left(\frac{\hat{P}}{2} - \hat{q} - m_c\right) \gamma^\mu \left(\frac{\hat{P}}{2} + \hat{q} + m_c\right),$$

где m_c — это масса *c*-кварка, *P*— полный импульс кварка и антикварка, а *q*—их относительный импульс. Проекторы на цветовые состояния—синглетное и октетное соответственно:

$$C_1 = \frac{\delta_{ij}}{\sqrt{N_c}}, \qquad C_8 = \sqrt{2}T^a_{ij},$$

где δ_{ij} — дельта Кронекера, T^a_{ij} — генераторы фундаментального представления цветовой группы SU(3), а $N_c = 3$. Окончательное проецирование на состояние с определенным значением углового момента производится с помощью взятия следа и производной по относительному импульсу q порядка, равного орбитальному квантовому числу (с последующим занулением q). Поэтому амплитуды рождения $c\bar{c}$ -пар могут быть записаны в виде

$$\mathcal{M}(a+b\to c\bar{c}[{}^{3}S_{1}^{(1)}]) = \operatorname{Tr}[C_{1}\Pi_{1}^{\mu}\mathcal{M}(a+b\to c\bar{c})\varepsilon_{\mu}(J_{z},P)]\big|_{q=0},$$

$$\mathcal{M}(a+b\to c\bar{c}[{}^{3}P_{J}^{(1)}]) = \frac{d}{dq_{\nu}}\operatorname{Tr}[C_{1}\Pi_{1}^{\mu}\mathcal{M}(a+b\to c\bar{c})\varepsilon_{\mu\nu}^{(J)}(J_{z},P)]\big|_{q=0},$$

$$\mathcal{M}(a+b\to c\bar{c}[{}^{1}S_{0}^{(8)}]) = \operatorname{Tr}[C_{8}\Pi_{0}\mathcal{M}(a+b\to c\bar{c})]\big|_{q=0},$$

здесь приведены характерные амплитуды рождения пар. Обозначение \mathcal{M} внутри знаков следа соответствует амлитуде рождения пары с "отрезанными" линиями конечных кварков, $\varepsilon(J_z, P)$ — это вектор или тензор поляризации.

Суммирование по поляризациям в процессе получения квадрата модуля амплитуды неполяризованного ${}^{3}S_{1}$ состояния чармония осуществляется с помощью поляризационного тензора

$$\mathcal{P}_{\mu\nu} = \sum_{J_z} \varepsilon_\mu(J_z, P) \varepsilon_\nu^*(J_z, P) = -g_{\mu\nu} + \frac{P_\mu P_\nu}{M^2}.$$

Для неполяризованных ${}^{3}P_{J}$ состояний тензоры имеют следующий вид (J = 0, 1, 2):

$$\mathcal{P}_{\mu\nu\rho\sigma} = \varepsilon_{\mu\nu}^{(0)}(P)\varepsilon_{\rho\sigma}^{(0)*}(P) = \frac{1}{3}\mathcal{P}_{\mu\nu}\mathcal{P}_{\rho\sigma},$$
$$\mathcal{P}_{\mu\nu\rho\sigma} = \sum_{J_z} \varepsilon_{\mu\nu}^{(1)}(J_z, P)\varepsilon_{\rho\sigma}^{(1)*}(J_z, P) = \frac{1}{2}\left[\mathcal{P}_{\mu\rho}\mathcal{P}_{\nu\sigma} - \mathcal{P}_{\mu\sigma}\mathcal{P}_{\rho\nu}\right],$$
$$\mathcal{P}_{\mu\nu\rho\sigma} = \sum_{J_z} \varepsilon_{\mu\nu}^{(2)}(J_z, P)\varepsilon_{\rho\sigma}^{(2)*}(J_z, P) = \frac{1}{2}\left[\mathcal{P}_{\mu\rho}\mathcal{P}_{\nu\sigma} + \mathcal{P}_{\mu\sigma}\mathcal{P}_{\rho\nu}\right] - \frac{1}{3}\mathcal{P}_{\mu\nu}\mathcal{P}_{\rho\sigma}$$

Кроме того, в работе изучаются и поляризованные состояния чармония. Для определения направления спина нами выбрана система отсчета, связанная со спиральностью кваркония (helicity frame); в этой системе вектор продольной поляризации направлен вдоль трехмерного импульса кваркония. Приведем выражения тензоров и для суммирования по состояниям с выделенной поляризацией. Процедура построения вектора продольной поляризации описана в работе, а его явное выражение и соответствующий тензор для ${}^{3}S_{1}$ состояния [18]:

$$\varepsilon_{\mu}(0,P) = \frac{(PQ)P_{\mu}/M - MQ_{\mu}}{\sqrt{(PQ)^2 - sM^2}}, \qquad \qquad \mathcal{P}^0_{\mu\nu} = \varepsilon_{\mu}(0,P)\varepsilon_{\nu}^*(0,P),$$

где Q—сумма импульсов сталкивающихся адронов (в нашем случае протонов) и $s = Q^2$. Поляризованное ${}^{3}P_1$ состояние вычислялось с помощью процедуры, описанной в работе [19]. Тензоры для поляризованных ${}^{3}P_2$ состояний, проекция J_z указана у тензоров верхним индексом [20]:

$$\mathcal{P}^{0}_{\mu\nu\rho\sigma} = \varepsilon^{(2)}_{\mu\nu}(0,P)\varepsilon^{(2)*}_{\rho\sigma}(0,P) = \frac{1}{6} \left[2\mathcal{P}^{0}_{\mu\nu} - \mathcal{P}^{1}_{\mu\nu} \right] \left[2\mathcal{P}^{0}_{\rho\sigma} - \mathcal{P}^{1}_{\rho\sigma} \right], \qquad \mathcal{P}^{1}_{\mu\nu} = \mathcal{P}_{\mu\nu} - \mathcal{P}^{0}_{\mu\nu},$$
$$\mathcal{P}^{1}_{\mu\nu\rho\sigma} = \sum_{|J_{z}|=1} \varepsilon^{(2)}_{\mu\nu}(J_{z},P)\varepsilon^{(2)*}_{\rho\sigma}(J_{z},P) = \frac{1}{2} \left[\mathcal{P}^{0}_{\mu\rho}\mathcal{P}^{1}_{\nu\sigma} + \mathcal{P}^{0}_{\mu\sigma}\mathcal{P}^{1}_{\rho\nu} + \mathcal{P}^{0}_{\nu\sigma}\mathcal{P}^{1}_{\mu\rho} + \mathcal{P}^{0}_{\nu\rho}\mathcal{P}^{1}_{\mu\sigma} \right],$$

$$\mathcal{P}^2_{\mu\nu\rho\sigma} = \sum_{|J_z|=2} \varepsilon^{(2)}_{\mu\nu} (J_z, P) \varepsilon^{(2)*}_{\rho\sigma} (J_z, P) = \frac{1}{2} \left[\mathcal{P}^1_{\mu\rho} \mathcal{P}^1_{\nu\sigma} + \mathcal{P}^1_{\mu\sigma} \mathcal{P}^1_{\rho\nu} - \mathcal{P}^1_{\mu\nu} \mathcal{P}^1_{\rho\sigma} \right].$$

Также следует обратить внимание на учет распадов вышележащих энергетических состояний в рождении чармония. Для получения сечения неполяризованного J/ψ проводится суммирование по сечениям рождения возбужденных состояний, умноженным на бранчинг распада данного состояния в основное, причем вычисление проводится с учетом эффекта отдачи, а именно — выражения для сдвига по поперечному импульсу основного состояния: $p_{TC} \approx (M_C/M_{C'}) \cdot p_{TC'}$. Учет распадов в рождении продольно поляризованного состояния J/ψ устроен сложнее, далее приведено полное выражение для этого сечения [19]:

$$\sigma_L^{J/\psi} = \sigma_L^{J/\psi, \, \text{прямое}} + \sigma_L^{\chi_{cJ}} + \sigma_L^{\psi'} + \sigma_L^{\psi' \to \chi_{cJ}}$$

каждое из слагаемых само представлено суммой сечений:

98

$$\begin{split} \sigma_L^{J/\psi(\psi'), \, \text{прямое}} &= \sigma_0^{J/\psi(\psi')}({}^3S_1^{(1)}) + \sigma_0^{J/\psi(\psi')}({}^3S_1^{(8)}) + \frac{1}{3}\sigma^{J/\psi(\psi')}({}^1S_0^{(8)}) + \\ &\quad + \frac{1}{3}\sigma^{J/\psi(\psi')}({}^3P_0^{(8)}) + \frac{1}{2}\sigma_1^{J/\psi(\psi')}({}^3P_1^{(8)}) + \frac{2}{3}\sigma_0^{J/\psi(\psi')}({}^3P_2^{(8)}) + \frac{1}{2}\sigma_1^{J/\psi(\psi')}({}^3P_2^{(8)}), \\ \sigma_L^{\chi_{cJ}} &= \left[\frac{1}{3}\sigma^{\chi_{c0}}({}^3P_0^{(1)}) + \frac{1}{3}\sigma^{\chi_{c0}}({}^3S_1^{(8)})\right] \text{Br}(\chi_{c0} \to J/\psi + \gamma) + \\ &\quad + \left[\frac{1}{2}\sigma_1^{\chi_{c1}}({}^3P_1^{(1)}) + \frac{1}{2}\sigma_0^{\chi_{c1}}({}^3S_1^{(8)}) + \frac{1}{4}\sigma_1^{\chi_{c1}}({}^3S_1^{(8)})\right] \text{Br}(\chi_{c1} \to J/\psi + \gamma) + \\ &\quad + \left[\frac{2}{3}\sigma_0^{\chi_{c2}}({}^3P_2^{(1)}) + \frac{1}{2}\sigma_1^{\chi_{c2}}({}^3P_2^{(1)}) + \frac{17}{30}\sigma_0^{\chi_{c2}}({}^3S_1^{(8)}) + \frac{13}{60}\sigma_1^{\chi_{c2}}({}^3S_1^{(8)})\right] \text{Br}(\chi_{c2} \to J/\psi + \gamma) \end{split}$$

$$\begin{split} \sigma_L^{\psi'} &= \sigma_L^{\psi', \text{ прямое}} \operatorname{Br}(\psi' \to J/\psi + X), \\ \sigma_L^{\psi' \to \chi_{cJ}} &= \frac{1}{3} \sigma_L^{\psi', \text{ прямое}} \operatorname{Br}(\psi' \to \chi_{c0} + \gamma) \operatorname{Br}(\chi_{c0} \to J/\psi + \gamma) + \\ &+ \left[\frac{1}{2} \sigma_L^{\psi', \text{ прямое}} + \frac{1}{4} \sigma_T^{\psi', \text{ прямое}} \right] \operatorname{Br}(\psi' \to \chi_{c1} + \gamma) \operatorname{Br}(\chi_{c1} \to J/\psi + \gamma) + \\ &+ \left[\frac{17}{30} \sigma_L^{\psi', \text{ прямое}} + \frac{13}{60} \sigma_T^{\psi', \text{ прямое}} \right] \operatorname{Br}(\psi' \to \chi_{c2} + \gamma) \operatorname{Br}(\chi_{c2} \to J/\psi + \gamma). \end{split}$$

Нижние индексы L и T соответствуют продольной и поперечной поляризациям состояний.

3. Результаты расчетов

Приведем перечень инструментов, использованных для вычислений. В первую очередь, по процедуре, описанной в предыдущей части, были получены квадраты модулей амплитуд партонных подпроцессов, рассматриваемых ниже; их вычисление проводилось в системе компьютерной алгебры Wolfram Mathematica с применением пакетов FeynCalc [21] и FeynArts [22]. Численное интегрирование сечений проводилось с помощью библиотеки численного интегрирования CUBA и алгоритма интегрирования Suave [23]. В качестве коллинеарных ПФР были взяты численно заданные функции MSTW2008LO [24]. Относительная погрешность всех вычислений не превышала 1 %.

Вычисление всех вкладов в рождение J/ψ было проведено в лидирующем порядке теории возмущений по бегущей константе связи α_s . Среди партонных подпроцессов $2 \rightarrow 1$ и $2 \rightarrow 2$, дающих вклад как в прямое рождение J/ψ , так и через промежуточные вышележащие состояния, выделим те, в которых рождаются синглетные состояния чармония, и те, в которых — октетные состояния:

В качестве начальных партонов учитывались глюоны g и кварки q (\bar{q}). Здесь не указаны подпроцессы $2 \rightarrow 1$, которым отвечают равные нулю матричные элементы синглетных состояний. В вычислениях массы состояний чармония принимались следующими [25]: $m_{J/\psi} = 3.096$ ГэВ, $m_{\psi'} = 3.686$ ГэВ, $m_{\chi_{c0}} = 3.415$ ГэВ, $m_{\chi_{c1}} = 3.510$ ГэВ, $m_{\chi_{c2}} = 3.556$ ГэВ. Распады состояний чармония в J/ψ и распады J/ψ в пары электрон-позитрон или мюон-антимюон учитывались бранчингами — дополнительными феноменологическими множителями, на которые домножались соответствующие сечения [25]: $\operatorname{Br}(\chi_{c0} \to J/\psi + \gamma) = 0.014$, $\operatorname{Br}(\chi_{c1} \to J/\psi + \gamma) = 0.343$, $\operatorname{Br}(\chi_{c2} \to J/\psi + \gamma) = 0.19$, $\operatorname{Br}(\psi' \to J/\psi + X) =$ = 0.614, $\operatorname{Br}(J/\psi \to e^+e^-) = 0.05971$, $\operatorname{Br}(J/\psi \to \mu^+\mu^-) = 0.05961$, $\operatorname{Br}(\psi' \to \chi_{c0} + \gamma) = 0.0979$, $\operatorname{Br}(\psi' \to \chi_{c1} +$ $+ \gamma) = 0.0975$, $\operatorname{Br}(\psi' \to \chi_{c2} + \gamma) = 0.0952$. Значения НМЭ, которые в НРКХД соответствуют адронизации рождающейся пары очарованных кварков, были взяты следующими [26]: $\langle \mathcal{O}^{J/\psi}[{}^{3}S_{1}^{(1)}] \rangle = 1.3$ ГэВ³, $\langle \mathcal{O}^{\psi'}[{}^{3}S_{1}^{(1)}] \rangle = 0.65$ ГэВ³, $\langle \mathcal{O}^{\chi_{c0}}[{}^{3}P_{0}^{(1)}] \rangle = 0.089$ ГэВ⁵, также использовались соотношения для НМЭ, справедливые в лидирующем порядке НРКХД по v и отражающие спиновую симметрию тяжелых кварков:

$$\begin{split} \langle \mathcal{O}^{\chi_{cJ}}[{}^{3}P_{J}^{(1)}] \rangle &= (2J+1) \cdot \langle \mathcal{O}^{\chi_{c0}}[{}^{3}P_{0}^{(1)}] \rangle, \\ \langle \mathcal{O}^{J/\psi}[{}^{3}P_{J}^{(8)}] \rangle &= (2J+1) \cdot \langle \mathcal{O}^{J/\psi}[{}^{3}P_{0}^{(8)}] \rangle, \\ \langle \mathcal{O}^{\chi_{cJ}}[{}^{3}S_{1}^{(8)}] \rangle &= (2J+1) \cdot \langle \mathcal{O}^{\chi_{c0}}[{}^{3}S_{1}^{(8)}] \rangle. \end{split}$$

При расчетах в качестве масштаба перенормировки μ_R , входящего в выражение для константы связи α_s , и масштаба факторизации μ_F , от которого зависят ПФР, была принята поперечная масса чармония $m_T = \sqrt{m^2 + p_T^2}$. Так как выбор величины для масштабов является довольно свободным, то для оценки коридора опшбок теоретических предсказаний масштаб варьировался на множитель 2 в большую и меньшую сторону, коридор погрешностей на графиках будет показан светлой полосой того же цвета, что и основная линия.

Для предсказания рождения и поляризации J/ψ в протон-протонных столкновениях на ускорителе NICA при энергии $\sqrt{s} = 27$ ГэВ сначала были проведены вычисления и сравнения для того же процесса при других энергиях, мы использовали результаты измерений коллабораций PHENIX ($\sqrt{s} = 200$ ГэВ) [27] и NA3 ($\sqrt{s} = 19.4$ ГэВ) [28]. Для описания рождения J/ψ в интервале малых быстрот |y| < 0.35 и при $p_T \ll 3$ ГэВ было достаточно синглетного вклада при традиционном значении $\langle q_T^2 \rangle_g = 1$ ГэВ². Однако его оказалось достаточно для описания данных измерений вплоть до $p_T \lesssim 3$ ГэВ, то есть во всей области применимости ОПМ, мы фитировали на этих экспериментальных данных для рождения J/ψ сам параметр $\langle q_T^2 \rangle_g$, значение которого чувствительно к энергии процесса: $\langle q_T^2 \rangle_g = 2.80$ ГэВ², χ^2 /d.o.f. = 0.18, а расчеты отображены на графике (рис. 3.1) с указанием вкладов различных синглетных состояний в суммарное сечение J/ψ .

Также были фитированы данные измерений коллаборации PHENIX [27] для больших быстрот 1.2 < |y| < 2.2 и данные коллаборации NA3 [28]. Для описания этих экспериментов синглетного вклада было недостаточно, поэтому учитывался вклад от октетных состояний с начальными глюонами и кварками, так как состояние ${}^{3}S_{1}^{(8)}$ в процессах с начальными глюонами не рождается. Следовательно, появился целый ряд новых параметров для фитирования: $\langle q_{T}^{2} \rangle_{q}$ (помимо аналогичного глюонного параметра) и октетные HMЭ, причем вклады от рождения J/ψ в процессах 2 \rightarrow 1 в состояниях ${}^{1}S_{0}^{(8)}$, ${}^{3}P_{2}^{(8)}$ имеют одинаковую зависимость от p_{T} , то есть пропорциональны друг другу, поэтому соответствующие им HMЭ могут быть извлечены из экспериментальных данных только в виде линейной комбинации $M_{7}^{J/\psi} = \langle \mathcal{O}^{J/\psi}[{}^{1}S_{0}^{(8)}] \rangle + 7 \cdot \langle \mathcal{O}^{J/\psi}[{}^{3}P_{0}^{(8)}] \rangle / m_{c}^{2}$. Значения всех параметров, фитированных на данных PHENIX и NA3, расположены в табл. 3.1, а результаты наших расчетов — на рис. 3.2 и рис. 3.3. Как видно, вклад октетных состояний (в процессах с начальными глюонами) становится сравним с синглетным вкладом и даже превышает его, а в случае с данными NA3 — он один почти полностью описывает эксперимент, поэтому во всяком случае при больших y октетный вклад не может быть проигнорирован.

Для расчета предсказаний поляризации ψ' мы фитировали и данные PHENIX по рождению ψ' при $\sqrt{s} = 200$ ГэВ [27]. Параметры, относящиеся к ОПМ, были взяты из фитирования данных по рождению J/ψ (табл. 3.1), так как они не должны зависеть от процесса, а октетные НМЭ, в частности $M_7^{\psi'} = \langle \mathcal{O}^{\psi'}[^1S_0^{(8)}] \rangle + 7 \cdot \langle \mathcal{O}^{\psi'}[^3P_0^{(8)}] \rangle / m_c^2$ и $\langle \mathcal{O}^{\psi'}[^3P_1^{(8)}] \rangle$, были фитированы, и результаты этих расчетов помещены в табл. 3.2 и на рис. 3.4.

Перейдем к предсказаниям рождения J/ψ при энергии эксперимента SPD NICA. В расчетах учитывались вклады и использовались параметры, фитированные на данных измерений коллаборации NA3 из-за близости энергии \sqrt{s} этих двух экспериментов. На рис. 3.5 и 3.6 показаны результаты расчетов для дифференциального сечения рождения J/ψ как функций поперечного импульса p_T и быстроты y соответственно.

Кроме того, мы сравнили наши вычисления для сечения рождения J/ψ в ОПМ с конвенциональными расчетами в КПМ. Аналогично были фитированы данные коллабораций PHENIX и NA3 для $p_T > 2$ ГэВ. Так же, как и в ОПМ, часть октетных НМЭ может быть фитирована лишь в виде линейной комбинации, однако она будет иной, так как в КПМ не существует процессов $2 \rightarrow 1$, и все состояния могут рождаться только в процессах $2 \rightarrow 2$. Анализ показывает, что отношение вкладов состояний ${}^{1}S_{0}^{(8)}$, ${}^{3}P_{1}^{(8)}$,

Рис. 3.1. Зависимость дифференциального сечения рождения J/ψ от поперечного импульса чармония p_T . Красная сплошная линия соответствует суммарному сечению, в которое входят сечение прямого рождения J/ψ (оранжевая штриховая линия) и вклады от распадов χ_{c2} (желтая пунктирная), ψ' (зеленая штрихпунктирная), χ_{c1} (синяя штрихпунктирная с двумя точками) и χ_{c0} (фиолетовая штрихпунктирная с тремя точками). Экспериментальные данные по рождению J/ψ коллаборации PHENIX [27]

Fig. 3.1. Differential cross section of prompt J/ψ production versus charmonium transverse momentum p_T . Summed J/ψ cross section (red solid line) consists of direct J/ψ production (orange dashed line) and feed-down contributions of χ_{c2} (yellow dotted line), ψ' (green dash-dotted line), χ_{c1} (blue dash-dot-dotted line) and χ_{c0} (purple dash-dot-dot-dotted line). Experimental data is taken from the PHENIX collaboration paper [27]

Таблица 3.1

Результаты фитирования сечения рождения J/ψ в ОПМ на данных коллаборации РНЕNIX в области больших быстрот 1.2 < |y| < 2.2 и данных коллаборации NA3 при y > 0Table 3.1

Эксп. данные	PHENIX [27]	NA3 [28]
$\langle q_T^2 angle_g, \ \Gamma$ э B^2	2.80	0.85
$\langle q_T^2 angle_q, \ \Gamma$ э B^2	1.30	0.15
$M_7^{J/\psi}, \ \Gamma$ э B^3	(5.17 ± 0.12)	$33) \cdot 10^{-2}$
$\langle \mathcal{O}^{J/\psi}[^3S_1^{(8)}]\rangle, \ \Gamma \mathfrak{s} \mathbf{B}^3$	(0.00 ± 0.00)	$26) \cdot 10^{-2}$
$\langle \mathcal{O}^{\chi_{c0}}[{}^3S_1^{(8)}] angle,\ \Gamma$ ə B^3	$(4.12 \pm 3.)$	$(55) \cdot 10^{-3}$
χ^2 /d.o.f	0.	52

Result of fitting of the prompt J/ψ production within GPM on the PHENIX collaboration data (1.2 < |y| < 2.2) and the NA3 collaboration data (y > 0)

 ${}^{3}P_{2}^{(8)}$ в КПМ остается одинаковым только при достаточно больших p_{T} . Другими словами, рассмотрим отношение

$$\mathcal{R}(p_T) = \frac{\sum\limits_{J=0,1,2} d\sigma(ab \to c\bar{c}[{}^3P_J^{(8)}] \to J/\psi)}{d\sigma(ab \to c\bar{c}[{}^1S_0^{(8)}] \to J/\psi)}$$

в нашем случае на интервале по p_T от 2 до 3 ГэВ отношение $\mathcal{R}(p_T)$ немного больше 3, то есть для фитирования данных и последующей оценки предсказаний КПМ будем использовать комбинацию $M_3^{J/\psi} = \langle \mathcal{O}^{J/\psi}[{}^1S_0^{(8)}] \rangle + 3 \cdot \langle \mathcal{O}^{J/\psi}[{}^3P_0^{(8)}] \rangle / m_c^2$. Результаты фитирования октетных НМЭ указаны в табл. 3.3, а расчеты для данных РНЕNIX и NA3 и предсказания для SPD NICA помещены на рис. 3.7—3.8 вместе с аналогичными расчетами в ОПМ. Как видно, в области малых быстрот, где сосредоточена основная доля рождающихся J/ψ , предсказания в КПМ, по крайней мере в лидирующем порядке по α_s , не со-

2024. Том 30, № 1. С. 94–109 2024, vol. 30, по. 1, pp. 94–109

Рис. 3.2. Зависимость дифференциального сечения рождения J/ψ от поперечного импульса чармония p_T в сравнении с экспериментальными данными коллаборации PHENIX [27]. Слева показано сравнение полных синглетного (желтая пунктирная линия) и октетного (синяя штрихпунктирная с двумя точками) вкладов в рождение J/ψ . Справа — сравнение прямого рождения J/ψ (зеленая пунктирная) и вклада от распадов возбужденных состояний чармония (фиолетовая штрихпунктирная с двумя точками). Красная сплошная линия в обоих случаях отвечает суммарному сечению J/ψ Fig. 3.2. Differential cross section of prompt J/ψ production versus charmonium transverse momentum p_T . Comparison of the singlet (yellow dotted line) and octet (blue dash-dot-dotted line) contributions is shown on the left, comparison of the direct J/ψ production (green dotted line) and feed-down (purple dash-dot-dotted line) contributions is shown on the right. Red solid line refers to summed J/ψ production on both plots. Experimental data is taken from the PHENIX collaboration paper [27]

Рис. 3.3. Зависимость дифференциального сечения рождения J/ψ от поперечного импульса чармония p_T в сравнении с экспериментальными данными коллаборации NA3 [28]. Слева показано сравнение полных синглетного (желтая пунктирная линия) и октетного (синяя штрихпунктирная с двумя точками) вкладов в рождение J/ψ . Справа — сравнение прямого рождения J/ψ (зеленая пунктирная) и вклада от распадов возбужденных состояний чармония (фиолетовая штрихпунктирная с двумя точками). Красная сплошная линия в обоих случаях отвечает суммарному сечению J/ψ

Fig. 3.3. Differential cross section of prompt J/ψ production versus charmonium transverse momentum p_T . Comparison of the singlet (yellow dotted line) and octet (blue dash-dot-dotted line) contributions is shown on the left, comparison of the direct J/ψ production (green dotted line) and feed-down (purple dash-dot-dotted line) contributions is shown on the right. Red solid line refers to summed J/ψ production on both plots. Experimental data is taken from the NA3 collaboration paper [28]

Таблица 3.2

Результаты фитирования сечения рождения ψ' в ОПМ на данных коллаборации PHENIX в области быстрот |y|<0.35

Result of fitting of the prompt ψ' production within GPM on the PHENIX collaboration data at midrapidity area |y| < 0.35 Table 3.2

Эксп. данные	PHENIX [27]
$M_7^{\psi'}, \ \Gamma$ э B^3	$(3.65\pm3.82)\cdot10^{-3}$
$\langle \mathcal{O}^{\psi'}[^{3}P_{1}^{(8)}]\rangle, \ \Gamma \Im \mathrm{B}^{5}$	$(0.05 \pm 1.24) \cdot 10^{-1}$
χ^2 /d.o.f	$6.6 \cdot 10^{-3}$

Рис. 3.4. Зависимость дифференциального сечения рождения ψ' от поперечного импульса чармония p_T в сравнении с экспериментальными данными коллаборации PHENIX [27]. Показаны вклады от рождения состояний ${}^{3}S_{1}^{(1)}$ (синяя штриховая линия), ${}^{3}S_{1}^{(8)}$ (оранжевая штрихпунктирная) и общий не разделяемый фитированием вклад состояний ${}^{1}S_{0}^{(8)}$, ${}^{3}P_{0}^{(8)}$, ${}^{3}P_{2}^{(8)}$ (желтая пунктирная). Сумма всех вкладов показана сплошной зеленой линией

Fig. 3.4. Differential cross section of prompt ψ' production versus charmonium transverse momentum p_T , contributions of the singlet state ${}^{3}S_{1}^{(1)}$ (blue dashed line), octet state ${}^{3}S_{1}^{(8)}$ (orange dash-dotted line) and a sum of octet states ${}^{1}S_{0}^{8}$, ${}^{3}P_{0}^{(8)}$, ${}^{3}P_{2}^{(8)}$ (yellow dotted line) are shown separately. Green solid line refers to a sum of all these ψ' states contributions. Experimental data is taken from the PHENIX collaboration paper [27]

Таблица 3.3

Результаты фитирования сечения рождения J/ψ в КПМ на данных коллабораций PHENIX (|y| < 0.35, 1.2 < |y| < 2.2) и NA3 (y > 0)

Table 3.3

		\mathbf{Result}	of fitting of	the pr	ompt J	$V/\psi~{ m produc}$	ction wi	thin CPM	
on	\mathbf{the}	PHENIX	y < 0.35,	1.2 < y	< 2.2)	and NA3	(y > 0)	${\bf collaborations}$	data

Эксп. данные	PHENIX [27], NA3 [28]
$M_3^{J/\psi}, \ \Gamma$ эВ ³	$(0.0^{+0.3}_{-3.3}) \cdot 10^{-3}$
$\langle \mathcal{O}^{J/\psi}[^3S_1^{(8)}] \rangle, \ \Gamma$ ə B^3	$(0.0^{+1.7}_{-2.6}) \cdot 10^{-3}$
$\langle \mathcal{O}^{\chi_{c0}}[{}^3S_1^{(8)}]\rangle, \ \Gamma \mathfrak{s} \mathrm{B}^3$	$(4.16 \pm 1.24) \cdot 10^{-3}$
χ^2 /d.o.f	7.23

2024. Том 30, № 1. С. 94-109 2024, vol. 30, по. 1, pp. 94-109

Рис. 3.5. Предсказания зависимости дифференциального сечения рождения J/ψ от поперечного импульса p_T для эксперимента SPD NICA. Слева показано сравнение полных синглетного (синяя пунктирная линия) и октетного (желтая штрихпунктирная с двумя точками) вкладов в рождение J/ψ. Справа — сравнение прямого рождения J/ψ (зеленая пунктирная) и вклада от распадов возбужденных состояний чармония (фиолетовая штрихпунктирная с двумя точками). Красная сплошная линия в обоих случаях отвечает суммарному сечению J/ψ

Fig. 3.5. Prediction for differential cross section of the prompt J/ψ production as a function of charmonium transverse momentum p_T at NICA energy $\sqrt{s} = 27$ GeV. Comparison of the singlet (yellow dotted line) and octet (blue dash-dot-dotted line) contributions is shown on the left, comparison of the direct J/ψ production (green dotted line) and feed-down (purple dash-dot-dotted line) contributions is shown on the right. Red solid line refers to summed J/ψ production on both plots

Рис. 3.6. Предсказания зависимости дифференциального сечения рождения J/ψ от быстроты y для эксперимента SPD NICA. Слева показано сравнение полных синглетного (синяя пунктирная линия) и октетного (желтая штрихпунктирная с двумя точками) вкладов в рождение J/ψ . Справа — сравнение прямого рождения J/ψ (зеленая пунктирная) и вклада от распадов возбужденных состояний чармония (фиолетовая штрихпунктирная с двумя точками). Красная сплошная линия в обоих случаях отвечает суммарному сечению J/ψ

Fig. 3.6. Prediction for differential cross section of the prompt J/ψ production as a function of charmonium rapidity y at NICA energy $\sqrt{s} = 27$ GeV. Comparison of the singlet (yellow dotted line) and octet (blue dash-dot-dotted line) contributions is shown on the left, comparison of the direct J/ψ production (green dotted line) and feed-down (purple dash-dot-dotted line) contributions is shown on the right. Red solid line refers to summed J/ψ production on both plots

.103

Рис. 3.7. Зависимость дифференциального сечения рождения J/ψ от поперечного импульса чармония p_T . Расчеты в КПМ (желтая штриховая линия) и ОПМ (синяя сплошная). Экспериментальные данные коллаборации PHENIX [27]

Fig. 3.7. Differential cross section of the prompt J/ψ production versus charmonium transverse momentum p_T within CPM (yellow dashed line) and GPM (blue solid line) approaches. Experimental data is taken from the PHENIX collaboration paper [27]

Рис. 3.8. Зависимость дифференциального сечения рождения J/ψ от поперечного импульса чармония p_T . Расчеты в КПМ (желтая штриховая линия) и ОПМ (синяя сплошная) для экспериментальных данных коллаборации NA3 [28] (слева) и предсказаний для SPD NICA (справа) Fig. 3.8. Differential cross section of the prompt J/ψ production versus charmonium transverse momentum p_T within CPM (yellow dashed line) and GPM (blue solid line) approaches. Experimental data is taken from the NA3 collaboration paper [28] (on the left). Prediction for differential cross section of J/ψ production at NICA energy (on the right)

гласуются ни с экспериментальными данными, ни с нашими предсказаниями в ОПМ, что, возможно, оправдывает наш подход к описанию неполяризованных J/ψ в ОПМ при $p_T < 3$ ГэВ.

Поляризация в рождении чармония может быть описана через один из коэффициентов в выражении для углового распределения лептонного распада чармония:

$$\frac{d\sigma}{d\Omega} \sim 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \varphi + \nu \sin^2 \theta \cos 2\varphi, \qquad \qquad \lambda = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L} = \frac{\sigma - 3\sigma_L}{\sigma + \sigma_L},$$

угловой коэффициент λ выражается через комбинацию сечений продольно и поперечно поляризованных чармониев. Расчеты для данных коллаборации PHENIX по измерению поляризации J/ψ изображены на рис. 3.9, построение границ коридора погрешностей для λ мы осуществляли с помощью следующих

выражений [29]:

$$\lambda_{\theta}^{\text{above}} = \lambda_{\theta}^{\text{centre}} + \sqrt{\left(\lambda_{\theta}^{\mu_{F}, \max} - \lambda_{\theta}^{\text{centre}}\right)^{2} + \left(\lambda_{\theta}^{\mu_{R}, \max} - \lambda_{\theta}^{\text{centre}}\right)^{2}},$$
$$\lambda_{\theta}^{\text{below}} = \lambda_{\theta}^{\text{centre}} - \sqrt{\left(\lambda_{\theta}^{\mu_{F}, \min} - \lambda_{\theta}^{\text{centre}}\right)^{2} + \left(\lambda_{\theta}^{\mu_{R}, \min} - \lambda_{\theta}^{\text{centre}}\right)^{2}}.$$

Вычисления показывают практически не зависящее от p_T значение коэффициента $\lambda \approx 0.4$, что совершенно не согласуется с имеющимися экспериментальными данными и говорит, вероятно, о том, что НРКХД не подходит для описания рождения поляризованных чармониев, по крайней мере, в лидирующем порядке теории возмущений.

Несмотря на расхождение наших расчетов для поляризации J/ψ с данными PHENIX, мы вычислили λ и для SPD NICA— наши предсказания для зависимости коэффициента λ от p_T и y в рождении J/ψ и ψ' показаны на рис. 3.10.

На рис. 3.11 можно увидеть наши вычисления отношений вкладов P-волновых состояний чармония χ_{cJ} в рождение J/ψ .

Рис. 3.9. Зависимость поляризации J/ψ от поперечного импульса p_T в ОПМ. Показаны вклад прямого рождения J/ψ (оранжевая штриховая линия), вклад от распада *P*-волновых состояний чармония χ_{cJ} (синяя пунктирная) и сумма этих вкладов (желтая сплошная). Экспериментальные данные коллаборации PHENIX [4]

Fig. 3.9. Polarization of J/ψ versus charmonium transverse momentum p_T . Direct J/ψ production (orange dashed line), feed-down contribution of *P*-wave χ_{cJ} states (blue dotted line) and summed J/ψ production (yellow solid line) are shown. Experimental data is taken from the PHENIX collaboration paper [4]

Рис. 3.10. Предсказания зависимости поляризации J/ψ (синяя сплошная линия) и ψ' (желтая штриховая) от поперечного импульса p_T и быстроты y в ОПМ для эксперимента SPD NICA Fig. 3.10. Prediction for J/ψ (blue solid lines) and ψ' (yellow dashed lines) polarization as functions of charmonium transverse momentum p_T (on the left) and charmonium rapidity y (on the right) at NICA energy

Рис. 3.11. Предсказания для отношений вкладов *P*-волновых состояний в рождение J/ψ в ОПМ для эксперимента SPD NICA. Показаны отношения сечений для $J_1 = 0 / J_2 = 2$ (синяя сплошная линия) и $J_1 = 1 / J_2 = 2$ (желтая штриховая)

Fig. 3.11. Prediction for ratios of *P*-wave states contributions to the J/ψ production at NICA energy. Ratios for $J_1 = 0 / J_2 = 2$ (blue solid line) and $J_1 = 1 / J_2 = 2$ (yellow dashed line) are shown

Заключение

Итак, в ходе нашей работы по изучению рождения J/ψ в НРКХД и ОПМ мы провели фитирование ряда экспериментальных данных по рождению J/ψ и ψ' в протон-протонных столкновениях для извлечения из них значений феноменологических параметров, входящих в описание процесса в рамках выбранных нами подходов. С использованием этих параметров мы получили предсказания для рождения неполяризованных и поляризованных J/ψ и ψ' на ускорителе NICA. Исходя из сравнения с предыдущими расчетами в НРКХД и ОПМ и имеющимися экспериментальными данными, можно считать адекватным выбранный нами подход для предсказания рождения неполяризованных чармониев на NICA и недостаточно удовлетворительным для описания поляризации чармониев.

Литература

- Kühn J.H., Kaplan J., Safiani E.G.O. Electromagnetic Annihilation of e⁺e⁻ Into Quarkonium States with Even Charge Conjugation // Nuclear Physics B. 1979. Vol. 157, Issue 1. Pp. 125–144. DOI: https://doi.org/10.1016/0550-3213(79)90055-5.
- [2] Bodwin G.T., Braaten E., Lepage G.P. Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium // Physical Review D. 1995. Vol. 51, Issue 3. Pp. 1125–1171. DOI: https://doi.org/10.1103/PhysRevD.55.5853.
- Fritzsch H. Producing Heavy Quark Flavors in Hadronic Collisions: A Test of Quantum Chromodynamics // Physics Letters B. 1977. Vol. 67, Issue 2. Pp. 217–221. DOI: https://doi.org/10.1016/0370-2693(77)90108-3.
- [4] Adare A. [et al.] Transverse momentum dependence of J/ψ polarization at midrapidity in p + p collisions at $\sqrt{s} = 200$ GeV // Physical Review D. 2010. Vol. 82, Issue 1. P. 012001. DOI: https://doi.org/10.1103/PhysRevD.82.012001.
- [5] Abulencia A. [et al.] Polarizations of J/ψ and $\psi(2S)$ Mesons Produced in $p\overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV // Physical Review Letters. 2007. Vol. 99, Issue 13. P. 132001. DOI: https://doi.org/10.1103/PhysRevLett.99.132001.
- Brambilla N. [et al.] Heavy Quarkonium: Progress, Puzzles, and Opportunities // The European Physical Journal C, 2011. Vol. 71. Article number 1534. DOI: https://doi.org/10.1140/epjc/s10052-010-1534-9.
- [7] Butenschoen M., Kniehl B.A. Next-to-leading-order tests of NRQCD factorization with J/ψ yield and polarization // Modern Physics Letters A. 2013. Vol. 28, No. 9. P. 1350027. DOI: https://doi.org/10.1142/S0217732313500272.
- [8] Arbuzov A. [et al.] On the physics potential to study the gluon content of proton and deuteron at NICA SPD // Progress in Particle and Nuclear Physics. 2021. Vol. 119. P. 103858. DOI: https://doi.org/10.1016/j.ppnp.2021.103858.

- [9] Karpishkov A.V., Nefedov M.A., Saleev V.A. Spectra and polarizations of prompt J/ψ at the NICA within collinear parton model and parton Reggeization approach // Journal of Physics Conference Series. 2020. Vol. 1435, No. 1. P. 012015. DOI: https://doi.org/10.1088/1742-6596/1435/1/012015.
- [10] Butenschoen M., Kniehl B. A. J/ψ Polarization at the Tevatron and the LHC: Nonrelativistic-QCD Factorization at the Crossroads // Physical Review Letters. 2012. Vol. 108, Issue 17. P. 172002. DOI: https://doi.org/10.1103/PhysRevLett.108.172002.
- [11] Fadin V.S., Lipatov L.N. Radiative corrections to QCD scattering amplitudes in a multi-Regge kinematics // Nuclear Physics B., 1993. Vol. 406, Issues 1–2, Pp. 259–292. DOI: https://doi.org/10.1016/0550-3213(93)90168-O.
- [12] Collins J. Foundation of Perturbative QCD. Cambridge: Cambridge University Press, 2011. 624 p. DOI: https://doi.org/10.1017/CBO9780511975592.020.
- [13] D'Alesio U., Murgia F., Pisano C. Towards a first estimate of the gluon Sivers function from A_N data in pp collisions at RHIC // Journal of High Energy Physics. 2015. Vol. 9. Article number 119. DOI: https://doi.org/10.1007/JHEP09(2015)119.
- [14] D'Alesio U., Murgia F., Pisano C., Taels P. Probing the Gluon Sivers Function in $p^{\uparrow}p \rightarrow J/\psi X$ and $p^{\uparrow}p \rightarrow DX$ // Physical Review D. 2017. Vol. 96, Issue 3. P. 036011. DOI: https://doi.org/10.1103/PhysRevD.96.036011.
- [15] Lepage G.P., Magnea L., Nakhleh C., Magnea U., Hornbostel K. Improved nonrelativistic QCD for heavy-quark physics // Physical Review D. 1992. Vol. 46, Issue 9. Pp. 4052–4067. DOI: https://doi.org/10.1103/PhysRevD.46.4052.
- [16] Eichten E., Quigg C. Quarkonium wave functions at the origin // Physical Review D. 1995. Vol. 52, Issue 3. P. 1726–1728. DOI: https://doi.org/10.1103/PhysRevD.52.1726.
- [17] Cho P.L., Leibovich A.K. Color-octet quarkonia production // Physical Review D. 1996. Vol. 53, Issue 1. Pp. 150–162. DOI: https://doi.org/10.1103/PhysRevD.53.150.
- [18] Beneke M., Krämer M., Vänttinen M. Inelastic photoproduction of polarized J/\u03c6 // Physical Review D. 1998. Vol. 57, Issue 7. Pp. 4258–4274. DOI: https://doi.org/10.1103/PhysRevD.57.4258.
- [19] Kniehl B.A., Lee J. Polarized J/ψ from χ_{cJ} and ψ' decays at the Fermilab Tevatron // Physical Review D. 2000. Vol. 62, Issue 11. P. 114027. DOI: https://doi.org/10.1103/PhysRevD.62.114027.
- [20] Cho P.L., Wise M.B., Trivedi S.P. Gluon fragmentation into polarized charmonium // Physical Review D. 1995. Vol. 51, Issue 5. Pp. R2039–R2043. DOI: https://doi.org/10.1103/PhysRevD.51.R2039.
- [21] Shtabovenko V., Mertig R., Orellana F. FeynCalc 9.3: New features and improvements // Computer Physics Communications. 2020. Vol. 256. P. 107478. DOI: https://doi.org/10.1016/j.cpc.2020.107478.
- [22] Hahn T. Generating Feynman diagrams and amplitudes with FeynArts 3 // Computer Physics Communications. 2001. Vol. 140, Issue 3. Pp. 418–431. DOI: https://doi.org/10.1016/s0010-4655(01)00290-9.
- [23] Hanh T. Cuba a library for multidimensional numerical integration // Computer Physics Communications. 2005. Vol. 168, Issue 2. Pp. 78–95. DOI: https://doi.org/10.1016/j.cpc.2005.01.010.
- [24] Martin A.D., Stirling W.J., Thorne R.S., Watt G. Parton distributions for the LHC // The European Physical Journal C. 2009. Vol. 63. Pp. 189–285. DOI: https://doi.org/10.1140/epjc/s10052-009-1072-5.
- [25] Zyla P.A. [et al.] Review of Particle Physics // Progress of Theoretical and Experimental Physics. 2020. Vol. 2020, Issue 8. P. 083C01. DOI: https://doi.org/10.1093/ptep/ptaa104.
- [26] Braaten E., Kniehl B.A., Lee J. Polarization of prompt J/ψ at the Tevatron // Physical Review D. 2000. Vol. 62. Issue 9. P. 094005. DOI: https://doi.org/10.1103/PhysRevD.62.094005.
- [27] Adare A. [et al.] Ground and excited state charmonium production in p + p collisions at $\sqrt{s} = 200$ GeV // Physical Review D. 2012. Vol. 85, Issue 9. P. 092004. DOI: https://doi.org/10.1103/PhysRevD.85.092004.
- [28] Badier J. [et al.] Experimental J/ψ Hadronic Production from 150-GeV/c to 280-GeV/c // Zeitschrift fur Physik C Particles and Fields. 1983. Vol. 20. Pp. 101–116. DOI: https://doi.org/10.1007/BF01573213.
- [29] Nelson R.E., Vogt R., Frawley A.D. Narrowing the uncertainty on the total charm cross section and its effect on the J/ψ cross section // Physical Review C. 2013. Vol. 87, Issue 1. P. 014908. DOI: https://doi.org/10.1103/PhysRevC.87.014908.

DOI: 10.18287/2541-7525-2024-30-1-94-109

A.V. Karpishkov Samara National Research University, Samara, Russian Federation E-mail: karpishkoff@gmail.com. ORCID: https://orcid.org/0000-0003-0762-5532 V.A. Saleev Samara National Research University, Samara, Russian Federation E-mail: saleev@samsu.ru. ORCID: https://orcid.org/0000-0003-0505-5564 K.K. Shilyaev Samara National Research University, Samara, Russian Federation E-mail: kirill.k.shilyaev@gmail.com. ORCID: https://orcid.org/0009-0005-0531-883X

PROMPT POLARIZED J/ψ PRODUCTION AT NICA WITHIN NRQCD AND GENERALIZED PARTON MODEL

ABSTRACT

In our work we consider prompt J/ψ and ψ' production within the approaches of nonrelativistic quantum chromodynamics and generalized parton model. We use various experimental data ($\sqrt{s} = 200$ GeV and $\sqrt{s} = 19.4$ GeV) of charmonium production to fit octet nonperturbative matrix elements and averaged values of initial partons' transverse momenta. Further, we make evaluation with the extracted parameters and predict J/ψ production cross section and polarization of J/ψ and ψ' at NICA collider energy $\sqrt{s} = 27$ GeV.

Key words: high energy physics; quantum chromodynamics; charmoium; spin; polarization; nonrelativistic quantum chromodynamics; collinear parton model; generalized parton model; SPD NICA.

Citation. Karpishkov A.V., Saleev V.A., Shilyaev K.K. Prompt polarized J/ψ production at NICA within NRQCD and generalized parton model. Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya / Vestnik of Samara University. Natural Science Series, 2024, vol. 30, no. 1, pp. 94–109. DOI: http://doi.org/10.18287/2541-7525-2024-30-1-94-109. (In Russ.)

Information about the conflict of interests: authors and reviewers declare no conflict of interests.

© Karpishkov A.V., Saleev V.A., Shilyaev K.K., 2024

Anton V. Karpishkov — Candidate of Physical and Mathematical Sciences, senior lecturer of the Department of General and Theoretical Physics, Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russian Federation.

Vladimir A. Saleev — Doctor of Physical and Mathematical Sciences, professor of the Department of General and Theoretical Physics, Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russian Federation.

Kirill K. Shilyaev — Master's Student of the Department of General and Theoretical Physics, Samara National Research University, 34, Moskovskoye shosse, 443086, Russian Federation.

References

- Kühn J.H., Kaplan J., Safiani E.G.O. Electromagnetic Annihilation of e⁺e⁻ Into Quarkonium States with Even Charge Conjugation. Nuclear Physics B, 1979, vol. 157, issue 1, pp. 125–144. DOI: https://doi.org/10.1016/0550-3213(79)90055-5.
- [2] Bodwin G.T., Braaten E., Lepage G.P. Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. *Physical Review D*, 1995, vol. 51, issue 3, pp. 1125–1171. DOI: https://doi.org/10.1103/PhysRevD.55.5853.
- Fritzsch H. Producing Heavy Quark Flavors in Hadronic Collisions: A Test of Quantum Chromodynamics. *Physics Letters B*, 1977, vol. 67, issue 2, pp. 217–221. DOI: https://doi.org/10.1016/0370-2693(77)90108-3.
- [4] Adare A. [et al.] Transverse momentum dependence of J/ψ polarization at midrapidity in p + p collisions at $\sqrt{s} = 200$ GeV. *Physical Review D*, 2010, vol. 82, issue 1, p. 012001. DOI: https://doi.org/10.1103/PhysRevD.82.012001.
- [5] Abulencia A. [et al.] Polarizations of J/ψ and $\psi(2S)$ Mesons Produced in $p\overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV. Physical Review Letters, 2007, vol. 99, issue 13, p. 132001. DOI: https://doi.org/10.1103/PhysRevLett.99.132001.
- Brambilla N. [et al.] Heavy quarkonium: Progress, puzzles, and opportunities. The European Physical Journal C, 2011, vol. 71, Article number 1534. DOI: https://doi.org/10.1140/epjc/s10052-010-1534-9.
- [7] Butenschoen M., Kniehl B.A. Next-to-leading-order tests of NRQCD factorization with J/ψ yield and polarization. Modern Physics Letters A, 2013, vol. 28, no. 9, p. 1350027. DOI: https://doi.org/10.1142/S0217732313500272.

- [8] Arbuzov A. [et al.] On the physics potential to study the gluon content of proton and deuteron at NICA SPD. Progress in Particle and Nuclear Physics, 2021, vol. 119, p. 103858. DOI: https://doi.org/10.1016/j.ppnp.2021.103858.
- [9] Karpishkov A.V., Nefedov M.A., Saleev V.A. Spectra and polarizations of prompt J/ψ at the NICA within collinear parton model and parton Reggeization approach. Journal of Physics Conference Series, 2020, vol. 1435, no. 1, p. 012015. DOI: https://doi.org/10.1088/1742-6596/1435/1/012015.
- [10] Butenschoen M., Kniehl B. A. J/ψ Polarization at the Tevatron and the LHC: Nonrelativistic-QCD Factorization at the Crossroads. *Physical Review Letters*, 2012, vol. 108, issue 17, p. 172002. DOI: https://doi.org/10.1103/PhysRevLett.108.172002.
- [11] Fadin V.S., Lipatov L.N. Radiative corrections to QCD scattering amplitudes in a multi-Regge kinematics. Nuclear Physics B, 1993, vol. 406, issues 1–2, pp. 259–292. DOI: https://doi.org/10.1016/0550-3213(93)90168-O.
- [12] Collins J. Foundation of Perturbative QCD. Cambridge: Cambridge University Press, 2011, 624 p. DOI: https://doi.org/10.1017/CBO9780511975592.020.
- [13] D'Alesio U., Murgia F., Pisano C. Towards a first estimate of the gluon Sivers function from A_N data in pp collisions at RHIC. Journal of High Energy Physics, 2015, vol. 9, Article number 119. DOI: https://doi.org/10.1007/JHEP09(2015)119.
- [14] D'Alesio U., Murgia F., Pisano C., Taels P. Probing the gluon Sivers function in $p^{\uparrow}p \rightarrow J/\psi X$ and $p^{\uparrow}p \rightarrow DX$. *Physical Review D*, 2017, vol. 96, issue 3, p. 036011. DOI: https://doi.org/10.1103/PhysRevD.96.036011.
- [15] Lepage G.P., Magnea L., Nakhleh C., Magnea U., Hornbostel K. Improved nonrelativistic QCD for heavy-quark physics. *Physical Review D*, 1992, vol. 46, issue 9, pp. 4052–4067. DOI: https://doi.org/10.1103/PhysRevD.46.4052.
- [16] Eichten E., Quigg C. Quarkonium wave functions at the origin. *Physical Review D*, 1995, vol. 52, issue 3, pp. 1726–1728. DOI: https://doi.org/10.1103/PhysRevD.52.1726.
- [17] Cho P.L., Leibovich A.K. Color-octet quarkonia production. *Physical Review D*, 1996, vol. 53, issue 1, pp. 150–162. DOI: https://doi.org/10.1103/PhysRevD.53.150.
- [18] Beneke M., Krämer M., Vänttinen M. Inelastic photoproduction of polarized J/ψ. Physical Review D, 1998, vol. 57, issue 7, pp. 4258–4274. DOI: https://doi.org/10.1103/PhysRevD.57.4258.
- [19] Kniehl B.A., Lee J. Polarized J/ψ from χ_{cJ} and ψ' decays at the Fermilab Tevatron. *Physical Review D*, 2000, vol. 62, issue 11, p. 114027. DOI: https://doi.org/10.1103/PhysRevD.62.114027.
- [20] Cho P.L., Wise M.B., Trivedi S.P. Gluon fragmentation into polarized charmonium. *Physical Review D*, 1995, vol. 51, issue 5, pp. R2039–R2043. DOI: https://doi.org/10.1103/PhysRevD.51.R2039.
- [21] Shtabovenko V., Mertig R., Orellana F. FeynCalc 9.3: New features and improvements. Computer Physics Communications, 2020, vol. 256, p. 107478. DOI: https://doi.org/10.1016/j.cpc.2020.107478.
- [22] Hahn T. Generating Feynman diagrams and amplitudes with FeynArts 3. Computer Physics Communications, 2001, vol. 140, issue 3, pp. 418–431. DOI: https://doi.org/10.1016/s0010-4655(01)00290-9.
- [23] Hanh T. Cuba a library for multidimensional numerical integration. Computer Physics Communications, 2005, vol. 168, issue 2, pp. 78–95. DOI: https://doi.org/10.1016/j.cpc.2005.01.010.
- [24] Martin A.D., Stirling W.J., Thorne R.S., Watt G. Parton distributions for the LHC. The European Physical Journal C, 2009, vol. 63, pp. 189–285. DOI: https://doi.org/10.1140/epjc/s10052-009-1072-5.
- [25] Zyla P.A. [et al.] Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020, vol. 2020, issue 8, p. 083C01. DOI: https://doi.org/10.1093/ptep/ptaa104.
- [26] Braaten E., Kniehl B.A., Lee J. Polarization of prompt J/ψ at the Tevatron. Physical Review D, 2000, vol. 62, issue 9, p. 094005. DOI: https://doi.org/10.1103/PhysRevD.62.094005.
- [27] Adare A. [et al.] Ground and excited state charmonium production in p+p collisions at $\sqrt{s} = 200$ GeV. *Physical Review D*, 2012, vol. 85, issue 9, p. 092004. DOI: https://doi.org/10.1103/PhysRevD.85.092004.
- [28] Badier J. [et al.] Experimental J/ψ Hadronic Production from 150-GeV/c to 280-GeV/c. Zeitschrift fur Physik C Particles and Fields, 1983, vol. 20, pp. 101–116. DOI: https://doi.org/10.1007/BF01573213.
- [29] Nelson R.E., Vogt R., Frawley A.D. Narrowing the uncertainty on the total charm cross section and its effect on the J/ψ cross section. *Physical Review C*, 2013, vol. 87, issue 1, p. 014908. DOI: https://doi.org/10.1103/PhysRevC.87.014908.