

Local polarimetry with inclusive neutral pions in SPD at NICA

Katherin Shtejer Díaz

ISHEPP - 2023

Katherin Shtejer

Layout of SPD

$$A_{\rm N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

 $A_{\rm N}$ is a measure of the beam polarization

$$p^{\uparrow} + p \rightarrow \pi + X$$

 $\sqrt{s} = 19.4 \text{ GeV} (p_{beam} = 200 \text{ GeV/c})$

Katherin Shtejer

$$p + p \rightarrow \pi^0 + X$$

- SpdRoot version 4.1.5.1
- **Two energies**: $pp @ \sqrt{s} = 10$ GeV and $pp @ \sqrt{s} = 27$ GeV
- \Box Particle generator: Pythia 8 (number of events: ~ 100 M)
- □ Minimum Bias: *SoftQCD:inelastic* ↔ inelastic, non diffractive events and diffractive topologies

MC truth info!

- □ Vertex assumed at (0, 0, 0) → Gaussian smeared: $\sigma_z = 30 \ cm$ and $\sigma_{x,y} = 0.1 \ cm$.
- Set of "ECAL particles" selected in each event and the initial energy per particle collected.
- □ Photon trajectory extrapolated to the ECAL endcap "planes".
- \Box z position fixed, assuming ECALTECMinDist = 188.6 cm (x,y smeared)
- □ Energy of the MC-particle, smeared by $\frac{\sigma_E}{E} = 2\% \oplus \frac{5.5\%}{\sqrt{E}}$ □ E_{min}^{γ} = 400 MeV
- \square π^0 selected from the M_{inv} of $\gamma\gamma$ pairs

 $pp @ \sqrt{s} = 27 \text{ GeV}$

 $pp @ \sqrt{s} = 10 \text{ GeV}$

Extraction of A_N

The spin dependent π^0 yields for each bin are extracted from the invariant mass spectra in different x_F sub-ranges for each φ bin.

Azimuthal cosine modulation of π^0 yields in x_F intervals, $[p0] \cdot (1 + [p1] \cdot \cos([p2] + x))$

Azimuthal cosine modulation of π^0 yields in x_F intervals, $[p0] \cdot (1 + [p1] \cdot \cos([p2] + x))$

 $A_{\rm N} vs. x_{\rm F}$

Relative error for $A_{\rm N}$ (pp @ $\sqrt{s} = 10$ GeV, pp @ $\sqrt{s} = 27$ GeV)

Katherin Shtejer

Taking the last experimental 4 points (0.3 $\leq x_F < 0.7$): $\frac{\Delta P}{P} = 0.0873 \sim 9\%$ (Experiment E704)

The error of the beam polarization in the experiment **E704** is

estimated in 10%, as reported in FERMILAB-Pub-91/15-E[E581,E704]

Estimation of the statistical accuracy of the beam polarization measurement, with $pp \rightarrow \pi^0 X$ at $\sqrt{s} = 10$ GeV and $\sqrt{s} = 27$ GeV, in SPD ECAL endcaps.

Summary

- The accuracy of the beam polarization have been estimated at two different pp collision energies: 10 GeV and 27 GeV
- The determination of the polarization is expected to be more precise in the range $0.3 < x_F < 0.4$ ($\sqrt{s} = 27$ GeV) and $0.5 < x_F < 0.6$ ($\sqrt{s} = 10$ GeV).
- From the asymmetry determination, based on MC truth simulations with SpdRoot, the statistical accuracy of the beam polarization, for 10 minutes, is estimated in: 1.05 % at 10 GeV and 0.32 % at 27 GeV.
- The inclusive $pp \rightarrow \pi^0 X$ reaction, detected in the ECAL Endcaps, is proposed to participate in the local polarimetry at SPD, by measuring and monitoring the transverse single spin asymmetry.
- Main difficulty: the few availability of accurate experimental data in the energy range of interest for SPD.