

Analysis of $K_{\rm S}^0$ production in SPD at NICA

Natalia Rogacheva

LHEP, JINR, Dubna

XXXI Annual International Seminar Nonlinear Phenomena in Complex Systems

24-28 June 2024

Nuclotron-based Ion Collider fAcility (NICA)

Motivation of study

The ultimate goal is to measure the transverse single-spin asymmetries (SSA) A_N for K_S^0 which are related to

- transversity quark TMD PDF
- Sivers quark TMD PDF
- Collins fragmentation function

Measurement of A_N for K_S^0 could help us to study the orbital motion of strange quark inside proton.

K meson

イロト 不通 ト イヨト イヨト

Schematic view of the SPD and event sample

Secondary vertex (V^0) are reconstructed in the detectors: Vertex detector and Straw tracker.

 K_{S}^{0} reconstruction

26 June 2024 5 / 19

Selection criteria

- The cuts on the quality of the tracks;
- Kinematical cuts:
 - 1) $\theta_{coll} < 0.03$ rad. for K_S^0 . This cut selects V^0 events the momentum looking at the PV.
 - 2) Dist > 0.7 cm for K_S^0 Dist = $\sqrt{(x_{SV} - x_{PV})^2 + (y_{SV} - y_{PV})^2 + (z_{SV} - z_{PV})^2}$. This cut selects V^0 which decay close to PV.

Distributions of the V^0 candidates in the Podolanski-Armenteros

Before selection criteria

After selection criteria

Helicity angle for selections K_S^0

Strange Particle Production in Hadronic Z⁰ Decays

SLAC-483

by Kenneth George Baird III

For the K_s^0 analysis, the Λ^0/Λ^0 background causes an asymmetric "bump" in the $\pi\pi$ -invariant mass distribution, as seen in Figure 6.2, which complicated the fitting procedure. A cut on the "helicity angle" θ^* , defined as the angle between the π^+ momentum vector in the K_s^0 rest frame and the K_s^0 flight direction, was used to remove the Λ^0 and $\bar{\Lambda^0}$ contamination (Fig. 6.3). K_s^0 candidates were required to have $|cos\theta^*| \leq 0.8$, which removed 20% of the K_s^0 signal. This cut also removes the γ -conversion background.

3) Helicity angle ($|\cos\theta^*| \leq 0.8$) for K_S^0 at SPD.

Invariant mass of K_S^0 after all cuts

The shape of the K_S^0 signal was parametrized by double Gaussian and background was parametrized by the second order polynomial. \triangleright $\land \equiv \flat \land \land$

The selected V^0 candidates are plated in (p,θ) , (x_F, p_T) and (y, p_T) phase space Pure Pythia 8 (true), K_S^0 :

Reconstruction data (RD):

N. Rogacheva (XXXIst Seminar NPCS)

 K_{S}^{0} reconstruction

26 June 2024 10 / 19

Binning

The choice of the binning scheme is obtained from distribution of K^0 simulated in Pythia 8. It was done to have the similar number of K_5^0 in bins $(n_{bin}^{\theta} = 4, n_{bin}^{p} = 10)$.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Distributions of the K_S^0 candidates with all cuts

 $K_{\rm S}^0$ reconstruction

Factorization of the MC correction (1st step)

 $K_{\rm S}^0$ reconstruction

26 June 2024 13 / 19

Feed down correction in PV and outside PV (2nd step)

Factorization of the MC correction

 $K_{\rm S}^0$ reconstruction

26 June 2024 15 / 19

イロト 不得下 イヨト イヨト 二日

Extraction of A_N for selections K_S^0

- The spin dependent K⁰_S yields for each bin are extracted from the invariant mass spectra in different x_F sub-ranges for each φ bin.
- The invariant mass was fitted with a second order polynomial function for the background and a normalized Gaussian distribution representing the signal peak.

N. Rogacheva (XXXIst Seminar NPCS)

 K_{S}^{0} reconstruction

26 June 2024 16 / 19

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extraction of A_N for selections K_S^0

<ロト <問ト < 目と < 目と

Relative A_N error in x_F intervals

Conclusion

- Analysis the K_S^0 reconstruction efficiency was performed. This procedure will be further applied for analysis $\Lambda(\bar{\Lambda})$.
- K_S^0 reconstruction efficiency depends on p and θ and in general is about 20%. K_S^0 reconstruction efficiency was factorized. Fraction of feed-down contribution is obtained.
- A_N for K_S^0 can be one of the first results of polarised measurements at SPD.
- Once the experimental data are collected, this decay can be used to validate event reconstruction and to probe quark TMD PDFs.