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Why are we interested in 
Soft Photons (SP)?

1. Excess of SP yield is observed in hadron & nuclear
interactions in a wide energy region.

2. SP are direct photons, they are not decay
products of other particles.

3. Soft gluons can be sources of SP (GDM).
4. The region of SP formation lies outside pQCD.
5. The relevance of a gluon component for nucleon

structure.
6. ECal pure crystals – expensive $50/cm3

“spaghetti” or “shashlik” (“sandwich’) - possible
way for SP study

(10 < pT < 50 MeV) 
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Experiments corroborating SP excess 
BEBC, 1984 solid line –
bremsstrahlung 

QED
(~8)

WA83, 1993

HELIOS, 1989
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Fig. 6 Dependence of the
direct soft photon production on
the jet neutral multiplicity. Left
panel: signal and predicted
inner bremsstrahlung rates as a
function of the jet neutral
multiplicity. Right panel: ratios
of the signal rates to those of the
inner bremsstrahlung. All the
curves in the figure are
independent 2nd order
polynomial fits produced to
guide the eye. The inner vertical
bars represent the statistical
errors, while the whole vertical
bars give the statistical and
systematic errors combined in
quadrature. The horizontal line
in the right panel represents the
statistical average over the
signal-to-bremsstrahlung ratios.
The cut pjet ≥ 20 GeV/c is
applied

7.5 Signal rates in the 2-dimensional distribution
Nch vs Nneu

Due to SU(2) symmetry of the strong interactions and/or se-
lection cuts, the variables Nch and Nneu can be correlated.
In order to disentangle the signal rate dependences on these
variables, the two-dimensional signal distribution as a func-
tion of the Nch and Nneu was studied. When doing this, the
range of the jet polar angles Θjet to the beam was restricted
to the interval of 50◦ ≤ Θjet ≤ 130◦. This restriction equal-
izes, practically, the angular acceptances for the charged and
neutral particles, the latter being mainly π0’s detected by
the HPC via their decay photons. This equalization is im-
portant when comparing quantitatively the photon rate de-
pendences on the above variables. For the same reason (to
equalize detection efficiencies for charged and neutral par-
ticles) a lower momentum cut at 2 GeV/c was introduced
when calculating the charged particle multiplicity for this
particular analysis.

The signal rates obtained with this selection are given as
a two-dimensional distribution presented in Table 5.4

The distribution was fitted by the simplest possible form
R = a1Nch + a2Nneu with a reasonable value of the reduced
χ2 close to 1 (the statistical errors only being used in the
fit). The values of the fitted rates are given in the last col-
umn of Table 5. The linear dependence coefficients a1 and
a2 obtained with the fit are (6.9 ± 1.8 ± 1.8) × 10−3γ /jet
and (37.7±3.0±3.6)×10−3γ /jet, respectively. The first er-
rors of these values are the fit parameter errors based on the
statistical errors of the signal rates. The second errors rep-
resent the fit parameter changes obtained by adding to the
signal rate central values their systematic errors taken ran-
domly accordingly to a Gaussian distribution, and repeating
this procedure many times to find at the end the r.m.s. of the

4The rates in the 1st and 5th lines of the signal column in Table 5
were corrected for the effect induced by the cut pjet ≥ 20 GeV/c after
appropriate study of the influence of this cut on the signal rates at small
Nch multiplicities, see comment on this influence given in Sect. 7.7.

DELPHY
2009 
(~17)
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the main sources of secondary hadrons are active
gluons (AG), and valence quarks are staying in leading
particles. The rest of gluons, ~ 50%, can’t turn into
hadrons - not enough energy. [Part.Nucl.Let.,2015]

They are picked up by newly born quarks with 
following dropping of energy by emission of SP:               

g + q -> γ + q. 

We can estimate SP’s emission region in the case of
almost equilibrium state using the black body 
emission spectrum for pp->hadrons+γ (SP) at U70:

Gluon Dominance Model:
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“Gluons are carriers of the strong force,
bind quarks together inside nucleons and
nuclei and generate nearly all of the visible
mass in the universe. Despite their
importance, fundamental questions remain
about the role of gluons in nucleon and
nuclei.”

To structure of the proton:
From Xiangdong Jin, 13th Confinement & hadron spectrum (2018):
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Estimation of SP’s emission region

L ~ 4-6 fm –
hadronization region?[Part.Nucl.Let., 2004] 

σγ ≈ 4mb, σ in ≈ 40mb;

σγ ≈ nγ (T ) ⋅σ in → nγ ≈ 0.1;
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Black body emission spectrum:



ECal scheme

A general view of
ECal based on BGO
crystals with veto-
detectors at NIS-GIBS
setup (Nuclotron,
JINR)

SP registration by ECal at Nuclotron
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Criterions of selection: 1) E in the front veto-counter < 0.3
MIPs; 2) E in the pre-shower 0.5 < E < 4 MIPs; 3) ToF: -1200
< t-tγ <600 ps; 4) E of more than 2 MeV is registered in one
BGO crystal; 5) location of shower in crystal must overlay
throughout vertical with the triggered pre-shower counter;
6) Energy deposition in the outer BGO layer should be ≤ 1/3 of
a total to prevent significant leakages.
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SP registration at Nuclotron
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Experimental and MC spectra of energy release in 
ECal + a pre-shower with 3.5А GeV/с beams of 

D (left) and Li (right) (50th + 51st runs) .

SP yield at Nuclotron
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Measurement of Soft Photons (SP)

ECal can be made of crystals or                  
present heterogeneous structure:                      
“shashlik”, “spaghetti”…
The first type: expensive,~ $50/cm3;
The second one: cheaper, ~ $5-$30/cm3.
Threshold for “shashlik” from 100 MeV, not
enough for SP registration.

(10 < pT < 50 MeV) 
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Expect parameters of ECal’s
We would like to fill a niche between 
heterogeneous structures “shashlik” 
for region 10-50 MeV (SP) with 
light yield ~ 3-6 ph/MeV and crystal detectors –
light yield ~10,000 -40,000 ph/MeV.

We’re aimed at creation of “heavy” ECal’s:
- scintillation decay time ~ 90 ns;
– light yield ~ 2000-3000 ph/MeV;
– price about $25-35/cm3 of volume;
– radiation resistance.
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We manufactured two prototypes of 
SpaCals, which consists of: 

1) W+Cu composite (absorber);
2) gallium-gadolinium-garnet (scintillator)  

Gd3Al2Ga3O12:Ce (GaGG) monocrystals

and arranged them in a beam. 

“Spaghetti” calorimeter (SPACAL)
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Comparison of scintillator properties

Parameters Gd3Al2Ga3O12 Bi4Ge3O12 NaI:Tl

light yield,
103ph/MeV

57 8 38

energy 
resolution,
(%@662кeV)

5,2 12 7,1

decay time, ns 88 300 250

hygroscopicity - - +
Density, g/cm3 6,63 7,13 3,67

Radiation peak, 
nm

520 480 415
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Preferences of Gd3Al2Ga3O12:

üfast-acting scintillator;
ühigh light yield;
ülack of hygroscopicity;
ümaximum of luminescence coincides 

well with peak SiPM’s;
ücrystal doped with B and Ba have a 

higher light yield – 50,000 ph/MeV,  
and decay time ~ 56 ns;



Expected principal advantages: 

ü timing at the level of 90 ps. Separating of
neutron fluxes from the recording SP
that’s difficult for slower BGO crystals.

ü Light yield in GaGG is 4 times more than
in BGO.

üCompactness (space-saving). Integral
density of this material is higher than
light plastic density.

ü Irradiation tests demonstrate good
radiation resistance of GaGG.
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Scintillation fibres
Absorber

This type of module makes possible 
reducing  active material by ~30% 
compared to “shashlik” type without 
worsening of ER and even with some 
improvement of it. 

Granularity of module is defined by 
the granularity of read-out system.

SPACAL module

SPACAL technology is a type of the sampling
calorimeter with scintillation fibers running along
shower direction.

18.07.202216



How does the energy loss in the absorber and 
energy resolution (ER) depend on the the fiber-
to-fiber distance? 

We should make clear what is more important –
ER or compactness of shower, and then, choose 
sensible configuration.

Expectation of ER: < 10%/E +1%

Optimization of scheme. Questions

18.07.202217



Manufacture of SpaCal prototype

Our activities is aimed at: 
ü design and manufacture prototypes of a detector 

cell based on W/Cu and GaGG: Ce; 
ü investigate and optimize the efficiency of 

collecting of scintillation light; 
ü simulate the development of an electromagnetic 

shower profile in SpaCal; 
ü study the possibilities to use the W/Cu/Pb + GaGG: 

Ce detector cells as SpaCal for the SP study.
Everything’s in progress.

18.07.202218



SpaCal scheme
The prototype detector cell is an assembly of W+Cu
composite plates and rods, and GaGG: Ce rods, with 
shape of a rectangular parallelepiped: 18 × 18 × 100 
mm3. It has of 6x6 (1×1×100 mm3) scintillator rods 
surrounded by absorber. The surfaces of plates and 
absorber rods are coated with a 10 µm polymer dim 
white reflector. We test 2 such assemblies.

	
	

Detector cell with
yellow/green rods, 
and grey plates.
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Covering of detector cell. 

	

GaGG:Ce rods

		
Cell in assembling λ =365 nm

SpaCal assembly
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Spatial development of a shower at 
irradiation of assembly with 23x23 
GaGG rods, 6x6x210mm3, 1mm gap 

by 103 photons with EΥ = 5 MeV, 
absorber – W+Cu.

Simulation of SpaCal

18.07.202221

Electro
n EM shower

Increasing the angle entails 
more fibers crossed by shower, 
but decreases the energy 
deposit in each of them.



Spatial development of a shower at irradiation of assembly with 
6x6 rods by single (left) and 10 photons (right) 

with EΥ = 100 MeV, absorber – Pb+Cu

Simulation of SpaCal

18.07.202222



18.07.202223

41 MeV

51 MeV

Data, Jun-2019
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MC simulation of SpaCal
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MC simulation of Shashlik
16 plates GaGG (100x100x3 mm3), 15 plates of 
2mm-absorber WCu(1/19), thickness – 78mm  
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Energy resolution SpaCal vs Shashlik
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GEANT4: SpaCal is irradiated by narrow beam (~0.2
mm) of photons with energy 100 MeV – 10 GeV hit in
the center of assembly. The energy release in GaGG
rods to total energy release is h = 100% ×EGaGG/Etot.
Results:
<hW> = 2.83% ± .01%, <hPb> = 5.25% ± .01%,
<hCu> = 6.49% ± .01% -> choice of W/Cu composition.

Scintillation yield at irradiation with 662 keV γ-rays
is 3940 phe/MeV if the source is located at the
bottom face of the cell to the photo-receiver, 3300
phe/MeV - for top face of it.

Energy release of EM shower in cell
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Our plans
For SpaSal ER will be 10 % and better for
photons with Eγ above 50 MeV with SiPMs and
the correct scheme for transporting of light to a
photo detector.

MC simulation and experiment with prototype of
Shashlik with GaGG scintillator and W/Cu
absorber to demonstrate better ER at low energy
then with SpaCal’s. In progress.

We also learn possibilities of using of Glass and
Glass Ceramic Stoichiometric and Gd3+ heavy
loaded BaO*2SiO2:Ce(DSB:Ce) scintillation
material for ECal application. 18.07.202228



Conclusions

1. The unique physical program of SP study
is proposed. It can be carried out at
accelerator setups of JINR and others.

2. Simulation of SpaCal and “Shashlik” is
evidence this program are quite
reasonable and feasible.

3. SpaCal’s parameters can be improved by
changing of the section of crystal rods,
adjusting the absorber density, and
optimizing the length of SpaCal for a
certain energy range of photons.

18.07.202229



Thank you for attention
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