PAPER • OPEN ACCESS

Spectra and polarizations of prompt J/ψ at the NICA within collinear parton model and parton Reggeization approach

To cite this article: A. V. Karpishkov et al 2020 J. Phys.: Conf. Ser. **1435** 012015

View the [article online](https://doi.org/10.1088/1742-6596/1435/1/012015) for updates and enhancements.

IOP ebooks™

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

Journal of Physics: Conference Series **1435** (2020) 012015

Spectra and polarizations of prompt J/ψ at the NICA within collinear parton model and parton Reggeization approach

A. V., Karpishkov^{1†}, M. A., Nefedov^{1,2‡} and V. A., Saleev^{1,3∗}

¹Samara National Research University, Samara, 443086 Russia ²II. Institut für Theoretische Physik, Universität Hamburg, Hamburg, 22761 Germany ³Joint Institute for Nuclear Research, Dubna, 141980 Russia

E-mail: †karpishkoff@gmail.com,‡nefedovma@gmail.com,[∗]saleev@samsu.ru

Abstract. We study prompt production of J/ψ at the energy range of the NICA collider within the parton Reggeization approach (PRA) applying the non-perturbative QCD (NRQCD) factorization model for $c\bar{c} \to J/\psi$ transition. We calculate transverse momentum distribution for direct J/ψ as well as for J/ψ from decays of higher-lying charmonium states. Production of polarized J/ψ is studied and parameter λ_{θ} as a function of transverse momentum is calculated. The comparison with predictions obtained in calculations based on the next-toleading approximation of the collinear parton model is done.

1. Introduction

A study of J/ψ production in collisions of non-polarized, as well as longitudinally and transversally polarized protons is included to the investigation program on Spin Physics Detector (SPD) at the new facility NICA of the JINR. It is of special interest as a testing ground for non-relativistic QCD (NRQCD) factorization picture of heavy quarkonium production.

2. Theoretical framework

2.1. The Parton Reggeization Approach

Here we will shortly discuss key points of the PRA. The PRA is based on three main ingredients: a factorization formula for hard processes in the modified Multi-Regge Kinematics (mMRK) [1], unintegrated parton distribution functions (unPDFs) in the Kimber-Martin-Ryskin (KMR) model [2] and a Lagrangian in the Lipatov's Effective Field Theory (EFT) of Reggeized gluons [3] and Reggeized quarks [4], which allow us to obtain gauge-invariant amplitudes of hard proces[se](#page-4-0)s with off-shell initial-state partons.

The k_T -factorization formula which is obtained in Ref. [1] from mMRK approximation for the sq[uar](#page-4-1)ed amplitude [o](#page-4-3)f auxiliary hard subprocess $g(p_1) + g(p_2) \rightarrow g(k_1) + \mathcal{Y}(P_A) + g(k_2)$ h[as](#page-4-2) the form:

$$
d\sigma = \int_{0}^{1} \frac{dx_1}{x_1} \int \frac{d^2 \mathbf{q}_{T1}}{\pi} \Phi_g(x_1, t_1, \mu^2) \int_{0}^{1} \frac{dx_2}{x_2} \int \frac{d^2 \mathbf{q}_{T2}}{\pi} \Phi_g(x_2, t_2, \mu^2) \cdot d\hat{\sigma}_{\text{PRA}},
$$
(1)

Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution \bigcirc of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

Journal of Physics: Conference Series **1435** (2020) 012015

where $t_{1,2} = -\mathbf{q}_{T1,2}^2$ – squared transverse momenta of initial-state reggeized gluons, $d\hat{\sigma}_{\text{PRA}}$ is a differential cross section, which contains a partonic probability density $|A_{\text{PRA}}|$ ² calculated in the PRA. APRA is an amplitude with initial-state gluons, which are, actually, off-shell $(q_{1,2}^2 = -t_{1,2} < 0)$, but nevertheless the amplitude is gauge-invariant because initial-state gluons are treated as Reggeized ones (\mathcal{R}) . It is calculated using the Gauge Invariant Effective Field Theory(EFT) for Multi-Regge processes in QCD [\[3\]](#page-4-2), the Feynman rules of the EFT can be found in Ref. [\[5\]](#page-4-4).

For the calculations of observables at relatively low pp center-of-mass energies, the normalization condition

$$
\int_{0}^{\mu^2} dt \ \Phi_i(x, t, \mu^2) = x f_i(x, \mu^2), \tag{2}
$$

doi:10.1088/1742-6596/1435/1/012015

for the unPDF becomes a particularly important constraint, ensuring the consistency with calculations in Collinear Parton Model at highest values of p_T . In Ref. [\[6\]](#page-4-5) (Eqns. 12-13) we have proposed a version of "integral formula" for KMR unPDFs, which ensures constraint [\(2\)](#page-2-0) exactly. We will use the unPDFs obtained in this way from MSTW-2008 PDFs [\[7\]](#page-4-6) in the numerical calculations performed in the present paper.

2.2. Short- and long-distance matrix elements of charmonium production

Due to sufficiently large masses of charmonium states under study applying of NRQCD factorization model [\[8\]](#page-4-7) is acceptable. In the NRQCD a cross section of quarkonia production is factorized to short- and long-distance matrix elements (LDMEs). The first ones can be obtained in the form of perturbative series in α_s and v – relative velocity of final heavy quarks. But LDMEs describes non-perturbative transitions of heavy quark pair into quarkonia, thus it must be extracted from data.

For the short-distance matrix elements at the quark level we consider following PRA subprocesses:

$$
\mathcal{R} + \mathcal{R} \rightarrow c\bar{c}[{}^{1}S_{0}^{(8)}, {}^{3}S_{1}^{(8)}, {}^{3}P_{J}^{(1)}, {}^{3}P_{J}^{(8)}], \tag{3}
$$

$$
\mathcal{R} + \mathcal{R} \rightarrow c\bar{c}[{}^{3}S_{1}^{(1)}] + g,
$$
\n
$$
\tag{4}
$$

Amplitudes with $c\bar{c}$ Fock state ${}^{2S+1}L_J^{(1,8)}$ with the spin S, total angular momentum J, orbital angular momentum L in the singlet (1) or in the octet (8) color state we obtained applying projectors on spin-singlet or spin-triplet state and projectors on color-singlet or color-octet state to an amplitude of $c\bar{c}$ -pair production [\[9,](#page-4-8) [10\]](#page-4-9).

3. Results and discussion

Since in our predictions we use modified unPDFs, we have performed a new fit of LDMEs, see Tab. [1.](#page-3-0)

To extract LDMEs we used data of CDF [\[12,](#page-4-10)[13\]](#page-4-11), CMS [\[14\]](#page-4-12) and ATLAS [\[15,](#page-4-13)[16\]](#page-4-14) collaborations. We should note, that CDF data [\[12,](#page-4-10) [13\]](#page-4-11), include region of small transverse momenta $p_T \leq 2m_c$. In this region, PRA prediction is well-defined, unlike predictions in NLO of CPM, and allows us to distinguish contributions of LDMEs $\langle \mathcal{O}^{J/\psi} | {}^1S_0^{(8)} \rangle$ $\langle 0^{(8)}] \rangle$ and $\langle \mathcal{O}^{J/\psi} [{}^3P_0^{(8)}]$ $\binom{O^{(8)}}{0}$ and also LDMEs $\langle \mathcal{O}^{\psi'} |^1S_0^{(8)}$ $\langle 0^{(8)}] \rangle$ and $\langle \mathcal{O}^{\psi'} [{}^3P_0^{(8)}]$ $\big\langle \big\langle \big\langle \big\langle \big\rangle \big\rangle \big\rangle \big\rangle$.

 \sqrt{S} \rightarrow S \rightarrow \sqrt{S} \rightarrow \sqrt{S} = \sqrt{S} \rightarrow \sqrt{S} \rightarrow \sqrt{S} \rightarrow \sqrt{S} \rightarrow \sqrt{S} \rightarrow \sqrt{S} \rightarrow 24 GeV, $0 < p_{T\psi} < 10$ GeV and $|y_{\psi}| < 3.0$. In our analysis we consider both direct and feeddown decay contributions of ψ' , χ_{cJ} to the J/ψ production (as in NLO CPM calculation [\[11\]](#page-4-15)).

doi:10.1088/1742-6596/1435/1/012015

In the present study we concentrate on the p_T -distribution $d\sigma/dp_T$ and the polarization parameter λ_{θ} , which is defined as follows:

$$
\lambda_{\theta}(p_T) = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L} = \frac{\sigma - 3\sigma_L}{\sigma + \sigma_L},\tag{5}
$$

where σ_T and σ_L are cross-sections of production of quarkonium with transverse or longitudinal polarization in the s-channel helicity frame, respectively.

The renormalization and factorization scales are set to be $\mu_R = \mu_F = \xi_{R,F} \sqrt{M_{\psi T}^2 + p_{\psi T}^2}$, where $\xi = 1$ for the central values of our predictions. We vary $1/2 < \xi_{R,F} < 2$ independently for each scale and take maximal total deviations from central value of the cross section to estimate theoretical uncertainties (green bands on our plots).

As we can see on the left panel of Fig. [1,](#page-4-16) predictions for p_T -distribution of charmonium production within LO PRA are in good agreement with predictions of NLO CPM for $p_T > 2$ GeV, while at small p_T NLO CPM predictions are inapplicable due to large double-logarithmic corrections ~ $(\log^2 p_T/(2m_c))$ which are resummed in unPDFs of PRA in Leading Logarithmic Approximation.

From right panel of Fig. [1](#page-4-16) one can see, that predictions of polarization parameter $\lambda_{\theta}(p_T)$ in NLO CPM and in LO PRA are quite different, mostly due to different values of LDMEs coming form the fit (see Tab. [1\)](#page-3-0).

Of course, at the energies of the NICA collider it is necessary to include not only gluon initial evolution contribution, but also quark ones. That task will be a part of our future work.

Acknowledgments

Authors thank the Ministry of Science and High Education of the Russian Federation for financial support in the framework of the Samara University Competitiveness Improvement Program among the world's leading research and educational centers for 2013-2020, the tasks No 3.5093.2017/8.9 and No 0777-2017-0007, and the Russian Foundation for Basic Research, Journal of Physics: Conference Series **1435** (2020) 012015

doi:10.1088/1742-6596/1435/1/012015

Figure 1. p_T-spectrum (left panel) and λ_{θ} polarization parameter (right panel) of J/ψ production in pp-collisions within NLO CPM [\[11\]](#page-4-15) (magenta dashed line) and LO PRA (red solid line).

grant No. 18-32-00060. We thank Prof. B. A. Kniehl and M. Butenschön for providing the NLO CPM predictions [\[11\]](#page-4-15) for NICA kinematic conditions.

References

- [1] Karpishkov A V, Nefedov M A and Saleev V A 2017 Phys. Rev. D 96 096019
- [2] Kimber M A, Martin A D and Ryskin M G 2001 Physical Review D 63 114027
- [3] Lipatov L N 1995 Nucl. Phys. B 452 369–400
- [4] Lipatov L N and Vyazovsky M I 2001 Nucl. Phys. B **597** 399-409
- [5] Antonov E N, Lipatov L N, Kuraev E A and Cherednikov I O 2005 Nucl. Phys. B 721 111–135
- [6] Nefedov M and Saleev V 2017 EPJ Web Conf. 158 03011 (Preprint <1709.06378>)
- [7] Martin A D, Stirling W J, Thorne R S and Watt G 2009 Eur. Phys. J. C 63 189–285 (Preprint <0901.0002>)
- [8] Bodwin G T, Braaten E and Lepage G P 1995 Phys. Rev. D 51 1125
- [9] Kniehl B A, Vasin D V and Saleev V A 2006 Phys. Rev. D 73 074022 (Preprint <hep-ph/0602179>)
- [10] Kniehl B A, Nefedov M A and Saleev V A 2016 Phys. Rev. D 94 054007 (Preprint <1606.01079>)
- [11] Butenschoen M and Kniehl B A 2011 Phys. Rev. D 84 051501 (Preprint <1105.0820>)
- [12] Acosta D et al 2005 Phys. Rev. D 71 032001 (CDF Collaboration)
- [13] Aaltonen T et al 2009 Phys. Rev. D 80 031103(R) (CDF Collaboration)
- [14] Khachatryan V et al 2015 Phys. Rev. Lett. 114 191802 (CMS Collaboration)
- [15] Aad G et al 2014 J. High Energ. Phys. 07 154 (ATLAS Collaboration)
- [16] Aad G et al 2015 J. High Energ. Phys. 09 079 (ATLAS Collaboration)