

SPIN PHYSICS DETECTOR AT NICA

Alexey Guskov, JINR XVIII MWPF

<u>alexey.guskov@jinr.int</u>

24.11.22

CONCEPT OF THE SPD PHYSICS PROGRAM

SPD - a universal facility for comprehensive study of gluon content in proton and deuteron at large x

Charmonia

Prompt photons

Open charm

Other physics

Other spin-related phenomena

SPD Physics Program

JPPNP: 103858

Model 3G

pp. 1-43 (col. fig: NIL)

ARTICLE IN PRESS

Progress in Particle and Nuclear Physics xxx (xxxx) xxx

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

On the physics potential to study the gluon content of proton and deuteron at NICA SPD

A. Arbuzov^a, A. Bacchetta^{b,c}, M. Butenschoen^d, F.G. Celiberto^{b,c,e,f}, U. D'Alesio^{g,h}, M. Deka^a, I. Denisenko^a, M.G. Echevarriaⁱ, A. Efremov^a, N.Ya. Ivanov^{a,j}, A. Guskov^{a,k,*}, A. Karpishkov^{1,a}, Ya. Klopot^{a,m}, B.A. Kniehl^d, A. Kotzinian^{j,o}, S. Kumano^p, J.P. Lansberg^q, Keh-Fei Liu^r, F. Murgia^h, M. Nefedov¹, B. Parsamyan^{a,n,o}, C. Pisano^{g,h}, M. Radici^c, A. Rymbekova^a, V. Saleev^{1,a}, A. Shipilova^{1,a}, Qin-Tao Song^s, O. Teryaev^a

- ^a Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
- ^b Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy
- ^c INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
- ^d II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- ^e European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), I-38123 Villazzano, Trento, Italy
- ^f Fondazione Bruno Kessler (FBK), I-38123 Povo, Trento, Italy
- ^g Dipartimento di Fisica, Università di Cagliari, I-09042 Monserrato, Italy
- ^h INFN Sezione di Cagliari, I-09042 Monserrato, Italy

Prog.Part.Nucl.Phys. 119 (2021) 103858

arXiv:2011.15005

SPD Physics Program

Prepared for Physics of Elementary Particles and Atomic Nuclei. Theory

Possible studies at the first stage of the NICA collider operation with polarized and unpolarized proton and deuteron beams

V.V. Abramov¹, A. Aleshko², V.A. Baskov³, E. Boos²,
V. Bunichev², O.D. Dalkarov³, R. El-Kholy⁴, A. Galoyan⁵, A.V. Guskov⁶,
V.T. Kim^{7,8}, E. Kokoulina^{5,9}, I.A. Koop^{10,11,12}, B.F. Kostenko¹³,
A.D. Kovalenko⁵, V.P. Ladygin⁵, A. B. Larionov^{14,15}, A.I. L'vov³, A.I. Milstein^{10,11},
V.A. Nikitin⁵, N. N. Nikolaev^{16,26}, A. S. Popov¹⁰, V.V. Polyanskiy³,
J.-M. Richard¹⁷, S. G. Salnikov¹⁰, A.A. Shavrin¹⁸, P.Yu. Shatunov^{10,11},
Yu.M. Shatunov^{10,11}, O.V. Selyugin¹⁴, M. Strikman¹⁹, E. Tomasi-Gustafsson²⁰,
V.V. Uzhinsky¹³, Yu.N. Uzikov^{6,21,22,*}, Qian Wang²³, Qiang Zhao^{24,25}, A.V. Zelenov⁷

¹NRC "Kurchatov Institute" - IHEP, Protvino 142281, Moscow region, Russia

² Skobeltsyn Institute of Nuclear Physics, MSU, Moscow, 119991 Russia

³ P.N. Lebedev Physical Institute, Leninsky prospect 53, 119991 Moscow, Russia

arXiv:2102.08477

SPD Conceptual Design Report

CDR was presented on the meeting of the JINR Program Advisory Committee for particle physics in Jan, 2021 and approved in Jan, 2022

JOINT INSTITUTE FOR NUCLEAR RESEARCH

February 3, 2021

Conceptual design of the Spin Physics Detector

Version 1.0

The SPD proto-collaboration*

arXiv:2102.00442

9

In	the	$d^{\uparrow}d^{\uparrow}$	mode	we	are

AFTER & LHCspin (LHC, CERN)

 $p - p^{\uparrow}$

PHENIX & STAR

(RHIC, BNL)

p1-p1

SPD (NICA, JINR)

p1-p1

E704

(Fermilab)

SATURNE II

Saclay p1-p1

SPASCHARM

(U-70, Protvino) p1-p1

ANKE

(COSY, Julich)

p1-p1

In the $p^{\uparrow}p^{\uparrow}$ mode:

^F໑ 10³³ ພິ - 10³²

10³¹

10³⁰

10²⁹

10²⁸

Experimental	SPD	RHIC	EIC	AFTER	LHCspin
facility	@NICA			@LHC	
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	p^{\uparrow} - p^{\uparrow}	$p^{\uparrow}-p^{\uparrow}$	$e^{\uparrow}-p^{\uparrow}, d^{\uparrow}, {}^{3}\mathrm{He}^{\uparrow}$	p - p^{\uparrow} , d^{\uparrow}	p - p^{\uparrow}
& polarization	$d^{\uparrow} extsf{-}d^{\uparrow}$				
	p^{\uparrow} - d, p - d^{\uparrow}				
Center-of-mass	<i>≤</i> 27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (<i>ep</i>)	115	115
energy $\sqrt{s_{NN}}$, GeV	≤13.5 (<i>d</i> - <i>d</i>)	500			
	≤19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	~0.1 (<i>d</i> - <i>d</i>)			~10 (<i>p</i> - <i>p</i>)	
Physics run	>2025	running	>2030	>2025	>2025

SPD – VS OTHERS

3D STRUCTURE OF THE PROTON

TMD PDFS

GLUON PDFs

GLUON PROBES AT SPD

KINEMATIC RANGE

CHARMONIA PRODUCTION

PROMPT PHOTON PUZZLE

16

UNPOLARIZED GLUONS IN PROTON AT HIGH x

17

GLUON HELICITY FUNCTION $\Delta g(x)$: SPIN CRISIS

 $S_{N} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$

GLUON HELICITY FUNCTION $\Delta g(x)$

GLUON HELICITY FUNCTION $\Delta g(x)$: EXPECTATIONS FOR A_{LL}

 $gg \rightarrow J/\psi g$

M. Nefedov

W. Vogelsang

GLUON-INDUCED TMD EFFECTS : GLUON SIVERS FUNCTION Δ_N^g (x,k_T)

- 1) Collinear factorization + threeparton correlations in twist-3
- 2) TMD factorization

Different <k_T> for quarks and gluons?

Sivers effect: left-right asymmetry of unpolarized k_T distribution in transversely polarized nucleon

 A_N

Sivers effect

- due to fragmentation of polarized quark ²¹

GLUON SIVERS FUNCTION $\Delta_N^g(\mathbf{x}, \mathbf{k}_T)$

First k_{\perp} -moment of the gluon Sivers function

PHENIX

GLUON-INDUCED TMD EFFECTS: EXPECTATIONS FOR AN

Sivers effect contribution

DEUTERON

-0.003

Ó

0.2

0.4

0.6

New structure functions: b_1, b_2, b_3, b_4

x

0.8

 $= 5.0 \text{ GeV}^2$

1.2

1.4

-0.004

-0.006+----0.01 $x \delta_T u_v = x \delta_T d_v$

0.1

GLUON TRANSVERSITY **Agt(x)** IN DEUTERON

asymmetry!

RATES FOR MAIN PROBES

. .

.

	$\sigma_{27\text{GeV}}$,	$\sigma_{13.5\text{GeV}}$,	$N_{27\mathrm{GeV}},$	N _{13.5 GeV}
Probe	nb (×BF)	nb (×BF)	10 ⁶	10 ⁶
Prompt- γ ($p_T > 3$ GeV/c)	35	2	35	0.2
J/ψ	200	60		
$ ightarrow \mu^+\mu^-$	12	3.6	12	0.36
$\psi(2S)$	25	5		
$igg ightarrow J/\psi\pi^+\pi^- ightarrow \mu^+\mu^-\pi^+\pi^-$	0.5	0.1	0.5	0.01
$ ightarrow \mu^+\mu^-$	0.2	0.04	0.2	0.004
$\chi_{c1} + \chi_{c2}$	200			
$ ightarrow \gamma J/\psi ightarrow \gamma \mu^+\mu^-$	2.4		2.4	
η_c	400			
$\rightarrow p \bar{p}$	0.6		0.6	
Open charm: $D\overline{D}$ pairs	14000	1300		
Single D-mesons				
$D^+ \to K^- 2\pi^+ (D^- \to K^+ 2\pi^-)$	520	48	520	4.8
$D^0 \to K^- \pi^+ (\overline{D}^0 \to K^+ \pi^-)$	360	33	360	3.3

SPD DETECTOR

Phys.Part.Nucl. 52 (2021) 6, 1044-1119arXiv:2102.08477PHYSICS OF THE FIRST STAGE OF SPD RUNNING

 $pp \rightarrow (6q)^* \rightarrow N N Mesons,$

Non-perturbative QCD

Perturbative QCD

- Spin effects in p-p, p-d and d-d elastic scattering
- Spin effects in hyperons production
- Multiquark correlations
- Dibaryon resonances
- Physics of light and intermediate nuclei collision
- Exclusive reactions
- > Hypernucei $dd \rightarrow K^+ K^+ {}^4_{\Lambda\Lambda} n_{,}$
- Open charm and charmonia near threshold

Auxiliary measurements for astrophysics

28

SPD: PHASE-I

Running with reduced beam energy and luminosity

RANGE (MUON) SYSTEM

ELECTROMAGNETIC CALORIMETER

190 layers Sc/Pb = 1.5/0.5 mm

Goals:

- Detection of prompt photons, photons from $\pi^{0},\,\eta$ and χ_{c} decays
- Identification of electrons and positrons, participation in muon identification

Requirements:

- Granularity ~4 cm
- Low energy threshold (\sim 50 MeV)
- Energy resolution ~ 5 % / \sqrt{E}

STRAW TRACKER

Goals:

- Track reconstruction and momentum measurement
- Participation in PID via dE/dx measurement

Requirements:

- Spatial resolution $\sim 150 \ \mu m$
- Low material budget
- Operation in magnetic field of about 1 T

CENTRAL DETECTOR

Goals:

- Reconstruction of secondary vertices for D-mesons decay
- Participation in track reconstruction and momentum measurement

Requirements:

- Spatial resolution <100 μm
- Low material budget
- Has to be installed as close as possible to the IP

DSSD option

PID

MRPC-based TOF

- π/K separation up to ~ 1.5 GeV
- *K*/*p* separation
- t₀ determination

Requirements:

Goals:

• Time resolution <60 ps

Aerogel counter in End-Caps

Wavelength shifter

Goals: π/K separation up to 2.5 GeV range Requirements: We should have enough light!

LOCAL POLARIMETRY AND LUMINOSITY CONTROL

Local polarimetry

- Charged particles in BBC
- π^0 in the end-cap part of ECAL
- Neutrons in ZDC

Zero-Degree Calorimeter

Goals:

- Luminosity monitor
- n/γ detection

Requirements:

- $13X_0$ for EM-part and $2.9\lambda_I$ for hadron part
- Energy resolution 50 % / $\sqrt{E} \oplus 30$ % for hadrons and 20 % / $\sqrt{E} \oplus 9$ % for γ
- Time resolution $\sim 150 \text{ ps}$

Beam-Beam Counter

• Time resolution ~1 ns (MPC) and ~400 ps (scintillator)

MCP-based FBBC

PHYSICS PERFORMANCE: GLUON PROBES (1 YEAR=10⁷ S)

PHYSICS PERFORMANCE: ACCURACIES

PHYSICS PERFORMANCE: ACCURACIES

SPD international collaboration

32 institutes from 14 states, ~300 members

SUMMARY

- ➤ The **Spin Physics Detector** at the NICA collider is a universal facility for comprehensive study of polarized and unpolarized **gluon content of proton and deuteron**; in polarized high-luminosity **p-p** and **d-d** collisions at $\sqrt{s} \le 27 \text{ GeV}$
- > Complementing main probes such as charmonia (J/ ψ and higher states), open charm and prompt photons will be used for that;
- SPD can contribute significantly to investigation of

O gluon helicity;

O gluon-induced TMD effects (Sivers and Boer-Mulders);

O unpolarized gluon PDFs at moderate and high-x in proton and deuteron;

- **O** gluon transversity in deuteron.
- 0...
- ► Dedicated physics program for Stage-I with reduced luminosity and beam energy.
- ► The SPD gluon physics program is complementary to the other intentions to study the gluon content of nuclei (RHIC, AFTER, EIC) and mesons (AMBER, EIC).
- ► SPD CDR is available as <u>arXiv:2102.00442</u> for more details.
- ► SPD TDR is about to be completed.
- More information could be found at http://spd.jinr.ru