Fast way to determine *pp*-collision time at the SPD experiment

Polina Filonchik

Moscow Institute of Physics and Technology

filonchik.pg@phystech.edu

Work done during START programme in JINR

The XXVI International Scientific Conference of Young Scientists and Specialists

AYSS-2022,

24-28 October 2022 MLIT, JINR

SPD experiment

Figure 1: General layout of the SPD setup

Task and initial conditions

Using information about particles trajectories and hits from TOF detector to determine time of *pp*-collision.

- **1** Resolution of TOF detector $\sigma_t = 70 \ ps$
- ② Momentum resolution: $\frac{\sigma_p}{p} = 2\%$
- TOF radius is 1 m and length of 3 m

The collision data was generated by the Pythia8-based programme written by Semyon Yurchenko.

Figure 2: General layout of the SPD setup

Figure 3: Scheme of TOF detector

Plan

- $\ \,$ Selection: Only fast charged particles with momentum p>0.5 GeV/c and events with more than 5 particles
- 2 Analysis: We treat all particles as charged pions

Figure 4: Dependence of *TOF* on momentum p for 4 types of particles: p, K, π , e.

t_0 by minimzation of χ^2

$$\chi^{2} = \sum_{i} \frac{(t_{0} + tof_{i} - t_{i})^{2}}{\sigma_{t}^{2} + \sigma_{tof_{i}}^{2}}$$
(1)

where t_i - the detector signal of the i-th particle from one event, $\sigma_t = 70 \ ps, \ \frac{\sigma_p}{p} = 2\%$ and

$$tof = \frac{L}{c} \sqrt{1 + \frac{m^2 c^4}{p^2 c^2}}$$
 (2)

Figure 5: Scheme of TOF detector

and for pions with $p > 0.5 \; GeV/c$:

$$\sigma_{tof}(p) = \sigma_p \cdot \left| \frac{dtof}{dp} \right| = \sigma_p \frac{L}{\sqrt{1 + \frac{m^2 c^4}{p^2 c^2}}} \cdot \frac{m^2 c^4}{p^3 c^3} < \sigma_{tof}(0.5 \text{ GeV}/c) \approx 8ps$$
 (3)

$$\min \chi^2 \to t_0 = \sum_i \frac{t_i - tof_i}{n} = \sum_i \frac{t_{diff_i}}{n} \tag{4}$$

time execution by brute-force (all combinations) algorithm $\sim 1~\text{s}$

All particles are π^{\pm}

Figure 6: t_0 -distribution in hypothesis that all particles are pions.

Figure 7: Difference between the detector's signal and TOF for pions

CDF of π^{\pm} appearance as a function of charge multiplicity

Figure 8: CDF of π^\pm appearance as a function of charge multiplicity

All π and part of earliest tracks

Figure 9: t_0 -distribution, where only 60% of earliest tracks of event

Figure 10: t_0 -distribution, where 70% of earliest tracks of event

Figure 11: Difference between the detector's signal and TOF for pions

$$t_{diff} = t_i - tof$$

TOF difference due to particle's types

Figure 12: Difference of time of flight between kaons and pions; protons and pions

Figure 13: Distribution t_{diff} of π and misidentified K for momentum < 1.5 GeV/c and 3 and more particles

Figure 14: Difference between the detector's signal and TOF for pions

$$t_{diff} = t_i - tof$$

Sliding window method

Window's size - $\pm 3\sigma_t$ ($\pm 210 \ ps$); $t_{diff} = t_i - tof$

Figure 15: t₀-distribution with sliding window method

Some artifacts here

Figure 16: Dependence m^2 on p

Error of estimation t_0

htemp
Entries 430172
Mean 3.642e-11
Std Dev 2.566e-11

Figure 17: Dependence mean estimations of t_0 and σ_{t_0} on momentum upper limit p_{max} .

Figure 18: Distribution of sample variance $\hat{\sigma}_{t_0}$ of t_0 .

$$\sigma_{t_0} = \sqrt{\sum_{i} \frac{(t_{diff_i} - t_0)^2}{n(n-1)}},$$
 (5)

where $t_{diff} = t_i - tof$

Acceptance rate

Figure 19: Dependence of acceptance rate on momentum limit p_{max}

$$\text{Acceptance rate} = \frac{\textit{N}_{3\sigma} \big(0.5 0.5 \ \text{and} \ n > 5 \big) }$$

n – count of charged particles with defined conditions in one event

Results

- Typical time to find t_0 is around 300 ns per event.
- ② 10⁶ times faster than brute-force (all combinations) algorithm.
- **3** Unbiased estimation of t_0 with $\sigma = 32$ ps by sliding window method.
- For 90% input events.

Thank you for your attention!