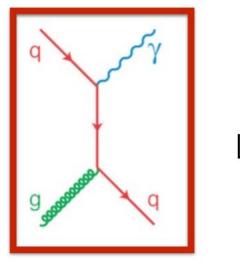
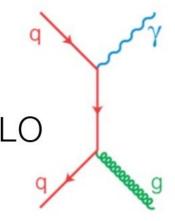
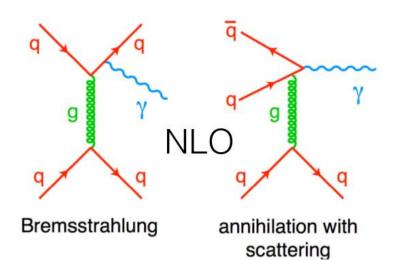


Prompt photons studies at SPD

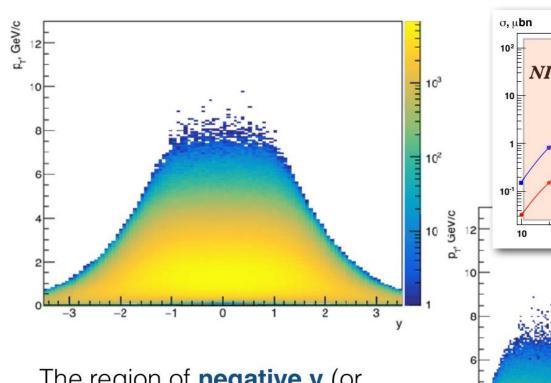



This report is prepared with plots and data taken from talks by A.Guskov

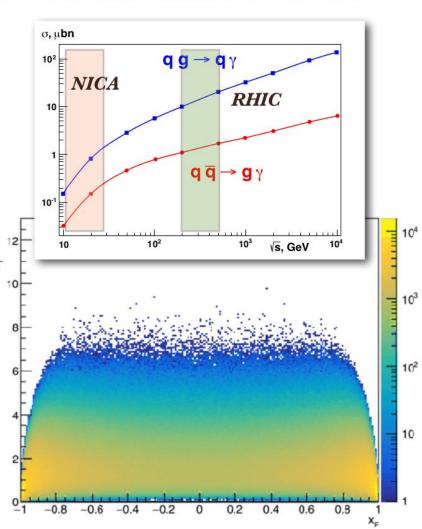


Prompt Photons

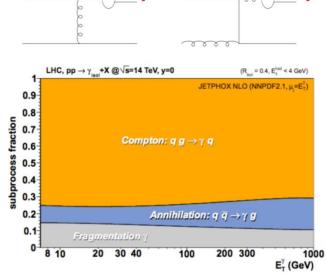
$$d\sigma_{AB} = \sum_{a,b=q,ar{q},g}\int dx_a dx_b f_a^A(x_a,\mu^2) f_b^B(x_b,\mu^2) d\sigma_{ab o\gamma X}(x_a,x_b,\mu^2).$$

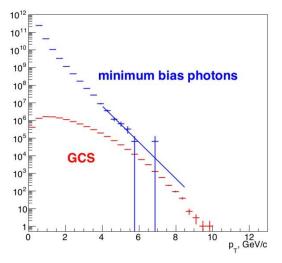

$$\mu \sim \text{PT/2}$$

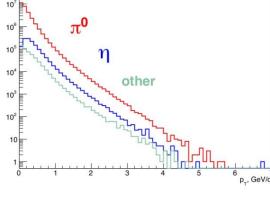
Measurement with prompt photons is direct access to gluon distributions in nucleons



Gluon Compton Scattering


The region of **negative y** (or **x**_F) is the most sensitive for gluon content of beam meson


Fragmentation and Decay Photons



Relative contribution of fragmentation photons is below 15% even at much higher energies.

It can be calculated in LO and NLO

Even at very high p_T signal will dominate over background!

Spin asymmetries with Prompt Photons (NIC

$$\mathbf{A_N} = rac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

Single transverse spin asymmetry

I. Shmidt, J. Soffer, J.J. Yang, Phys. Lett. B 612 (2005)

gluon Sivers function

$$\sigma^{\uparrow} - \sigma^{\downarrow} = \sum_{i} \int_{x_{min}}^{1} dx_{a} \int d^{2}\mathbf{k}_{Ta} d^{2}\mathbf{k}_{Tb} \frac{x_{a}x_{b}}{x_{a} - (p_{T}/\sqrt{s}) \ e^{y}} \left[q_{i}(x_{a}, \mathbf{k}_{Ta}) \Delta_{N} G(x_{b}, \mathbf{k}_{Tb}) \right]$$

$$\times \frac{d\hat{\sigma}}{d\hat{t}} (q_{i}G \rightarrow q_{i}\gamma) + G(x_{a}, \mathbf{k}_{Ta}) \Delta_{N} q_{i}(x_{b}, \mathbf{k}_{Tb}) \frac{d\hat{\sigma}}{d\hat{t}} (Gq_{i} \rightarrow q_{i}\gamma)$$

where $q(x_{a,b},k_{Ta,b})$ and $G(x_{a,b},k_{Ta,b})$ are quark and gluon distribution functions and $\Delta_N q(x_{a,b},k_{Ta,b})$

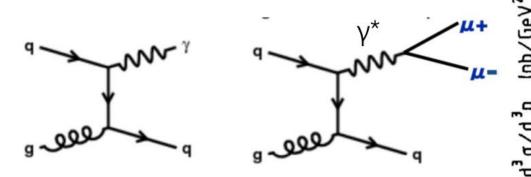
$$A_{LL} = \frac{(\sigma_{++} + \sigma_{--}) - (\sigma_{+-} + \sigma_{-+})}{(\sigma_{++} + \sigma_{--}) + (\sigma_{+-} + \sigma_{-+})}$$

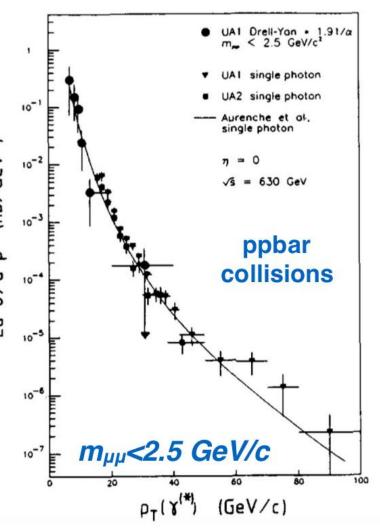
Double longitudinal spin asymmetry

G. Bunce et. al. Ann.Rev.Nucl.Part.Sci. 50:525-575,2000

$$A_{LL} \approx \frac{\Delta g(x_1)}{g(x_1)} \cdot \left[\frac{\sum_q e_q^2 \left[\Delta q(x_2) + \Delta \bar{q}(x_2) \right]}{\sum_q e_q^2 \left[q(x_2) + \bar{q}(x_2) \right]} \right] + (1 \leftrightarrow 2)$$

 A_{1}^{P} - known from DIS


Prompt Photons and DY


Phys.Lett. B209 (1988) 397-406 (1988)

Comparison of Drell-Yan and single photon cross sections

Production of low-mass dimuon pairs is a process very similar to prompt photon production

- two orders of magnitude smaller cross section
 - possibility to achieve low-p_T region

Prompt Photons at SPD

Estimations of direct photon production rates.

Estimation of the direct photon production rates based on PYTHIA6 Monte-Carlo simulation for two values of colliding proton energies. Event rates are given for all and for leading processes of direct photon production considered in PYTHIA. Statistical accuracies of A_N and A_{LL} measurements at NICA, have been estimated assuming the beam polarizations (both transversal and longitudinal) equal to $P = \pm 0.8$ and overall detector efficiency (acceptance, efficiency of event reconstruction and selection criteria) of about 50%.

To minimize systematic uncertainties, precision of luminosity and beam polarization should be under control, as well as accuracy of π^0 and other background rejection.

\sqrt{s} =24 GeV	σ_{tot} ,	$\sigma_{P_T>4~GeV/c}$	Events/year,	Events/year,
$L = 1.0 \times 10^{32}, cm^{-1}s^{-1}$	nbarn	nbarn	10^{6}	$10^6 \ (P_T > 4 \ GeV/c)$
All processes	1290	42	3260	105
$qg ightarrow q \gamma$	1080	33	2730	84
$qar q o g\gamma$	210	9	530	21
\sqrt{s} =26 GeV	σ_{tot} ,	$\sigma_{P_T>4~GeV/c}$	Events/year,	Events/year,
$L = 1.2 \times 10^{32}, \ cm^{-1}s^{-1}$	nbarn	nbarn	106	$10^6 \ (P_T > 4 \ GeV/c)$
All processes	1440	48	4340	144
$qg ightarrow q\gamma$	1220	38	3680	116
$q ar q o g \gamma$	240	10	660	28

Summary on Prompt Photons Proposal

- Unpolarized and polarized physics with prompt photons looks very attractive
- All the measurements at energy scale ~20 GeV were performed with pion and proton beams only 20-30 years ago It is a good time to come back with new level of experimental techniques and theoretical understanding
- We have good chance to perform such kind of measurements at SPD detector
- Background conditions for studies with prompt photons are quite hard. So the SPD detector should be really optimized.