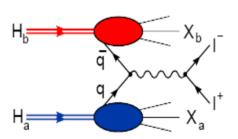
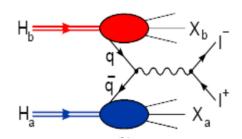
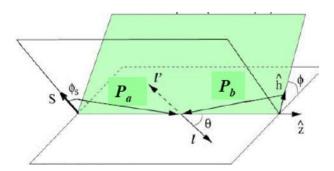


on behalf of DY team

- 1. Introduction
- 2. Cross sections and statistics
- 3. Background studies
- 4. MC weighted asymmetries
- 5. Some estimations and proposals
- 6. Plans


Drell-Yan studies with SPD. Status and Plans.Introduction.




NUCLEON

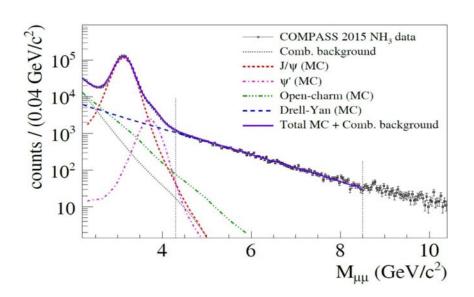
	unpolarized	longitudinally pol.	transversely pol.
unpolarized	f ₁ number density		f _{1T} Sivers
long. pol.		g _{1L} → ← → → helicity	g ₁ <i>T</i>
transversely pol.	h ₁ [⊥]	$\begin{array}{c} \mathbf{h}_{1L}^{\perp} \\ \bullet & - & \bullet \end{array}$	Transv. \mathbf{h}_1 \mathbf{h}_{1T}

- 1. Transversity: $A_{UT}^{\sin(\phi+\phi_S)}$, represents the number distribution of transversely polarized quarks in a transversely polarized nucleon;
- 2. Sivers: $A_{UT}^{\sin(\phi-\phi_S)}$, represents the distribution over the transverse momentum of non-polarized quarks in a transversely polarized nucleon;
- 3. Pretzelosity: $A_{UT}^{\sin(3\phi-\phi_S)}$, represents the distribution over the transverse momentum of transversely polarized quarks in a transversely polarized nucleon;
- 4. Boer-Mulders: $A_{UU}^{\cos(2\phi_h)}$, represents the distribution over the transverse momentum of transversely polarized quarks in a non-polarized nucleon;
- 5. Worm-Gears: $A_{UL}^{\cos(2\phi_h)}$, represents the distribution over the transverse momentum of longitudinally polarized quarks in a longitudinally polarized nucleon.

Cross sections and statistics.

DY via μ - μ +, \sqrt{s} = 26 GeV

Some settings:

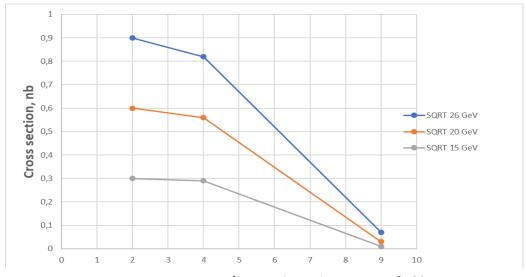

MSEL=0! turn OFF global process selection

MSUB(1)=1! turn ON q+qb -> gamma*/ZO -> mu+mu- (Drell-Yan process)

MSTP(43)=1 ! only gamma* included (Drell-Yan)

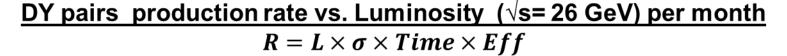
MDME(184,1)=1 ! ZO -> mu+mu- turned ON

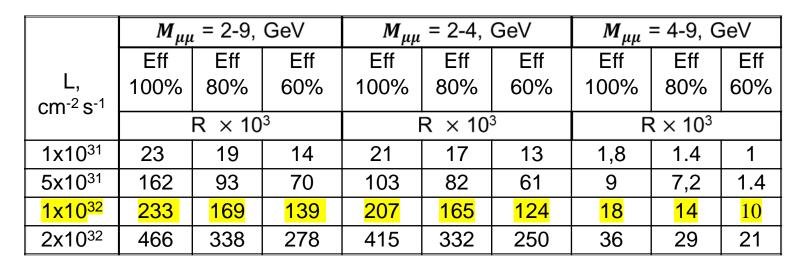
$M_{\mu\mu}$ GeV	σ tot, nb	
>2	1.23	
>3	0.27	
>4	0.07	



Cross sections and statistics.

For various invariant mass ranges with $P_{\mu} > 1$ GeV $\sigma_{range} = \sigma_{tot} \times N_{evt \ range} / N_{evt}$


	$M_{\mu\mu}$ 2 - 11 GeV	$M_{\mu\mu}$ 2 - 4 GeV	$M_{\mu\mu}$ 4 - 9 GeV	$M_{\mu\mu}$ 9 - 11 GeV
√s GeV	σ _{tot} , nb	σ _{tot} , nb	σ _{tot} , nb	σ _{tot} , nb
<mark>26</mark>	0.9	0.82	0.07	<0.01
20	0.6	0.56	0.03	<0.01
15	0.3	0.29	0.009	<0.01

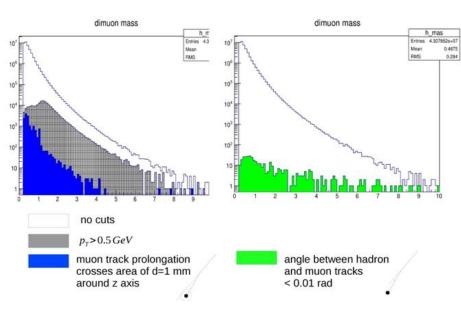


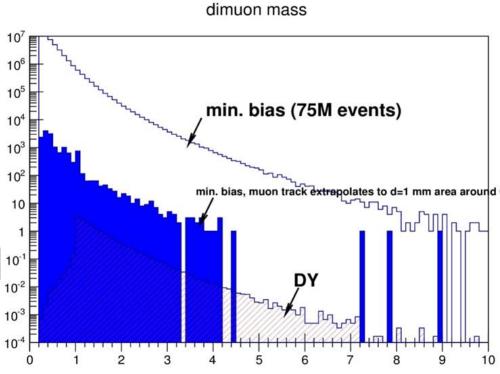
dimuon invariant mass,GeV

Cross sections and statistics.

COMPASS-II proposal

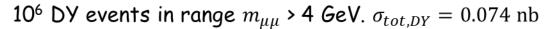
	R (day)		R (month) ×10 ³		
π⁻ beam, GeV	Μμμ=2-2.5	Μμμ=4-9	Μμμ=2-2.5	Μμμ=4-9	
106	4013	440	120	13	
160	4617	695	139	21	
190	4858	809	146	24	

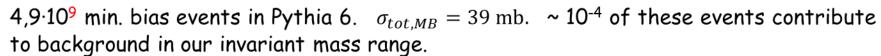


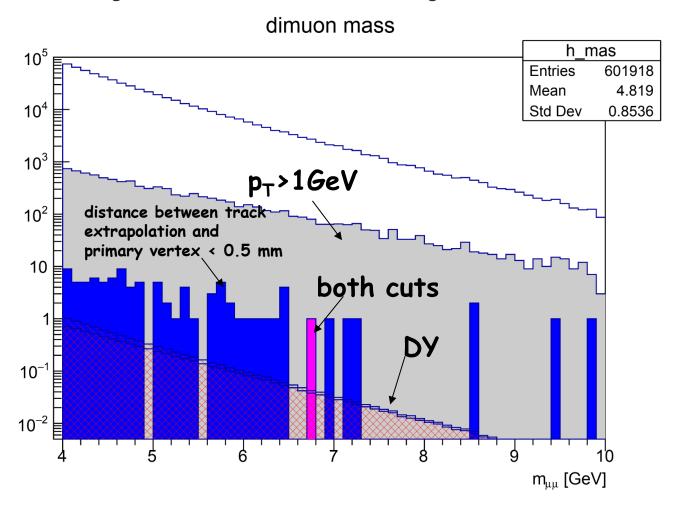


Drell-Yan studies with SPD. Status and Plans. Background studies (old results).

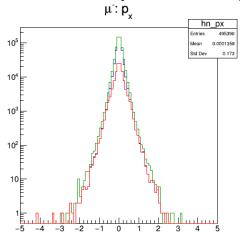
- 2 proton beams with E=12 GeV
- Only process $q \overline{q} \rightarrow \gamma^* \rightarrow \mu^+ \mu^-$
- *m*_{μμ}>1 *GeV*
- Decays of π^{\pm} , K^{\pm} , K_L^0 turned on
- 105 events
- $\sigma_{tot} = 8.7 \, nb$ (ratio $\sigma_{tot}(MB)/\sigma_{tot}(DY) \approx 4.5 \cdot 10^6$)
- Only muons produced in volume with L=8 m and D=7 m were taken into account.
- (For $m_{uu} > 3 GeV \sigma_{tot} = 0.23 nb$)

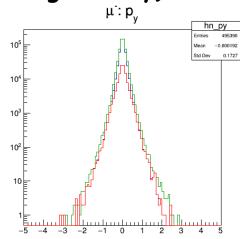


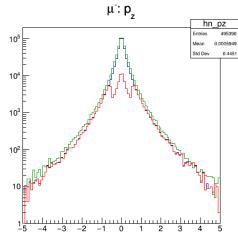


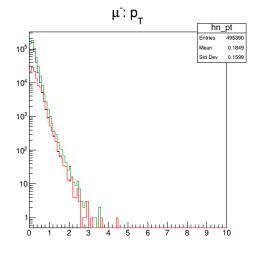

~1:60 signal/background - 07.2018

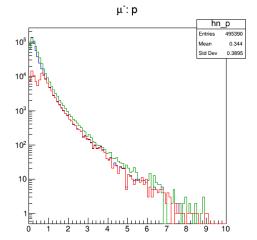
Background studies (new results).

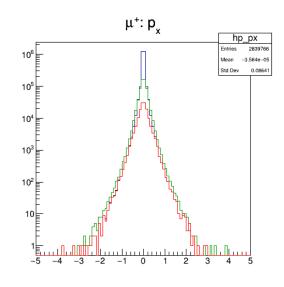


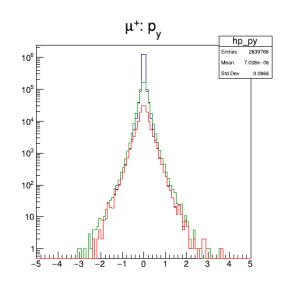

Drell-Yan studies with SPD. Status and Plans. Background studies

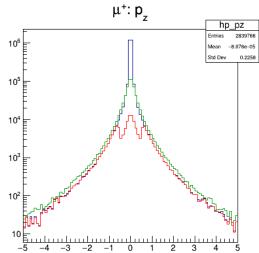

Background studies.

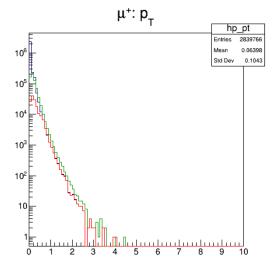

1M min. bias events with Pythia6

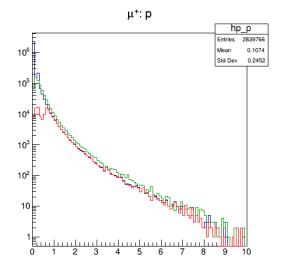

- green "Pure" Pythia6
- blue SpdRoot (Hybrid geometry) all muons
- red SpdRoot (Hybrid geometry) reached RS

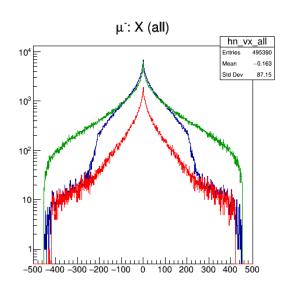


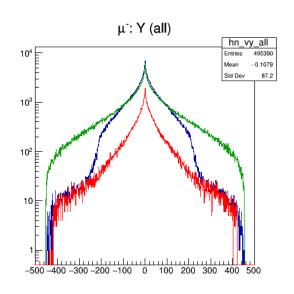


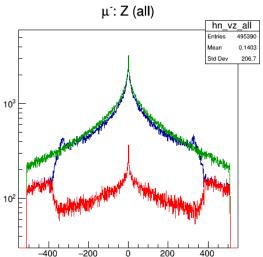


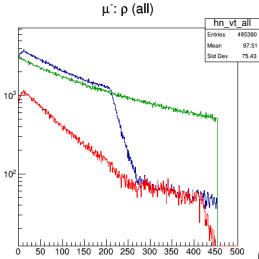

Drell-Yan studies with SPD. Status and Plans.Background studies.

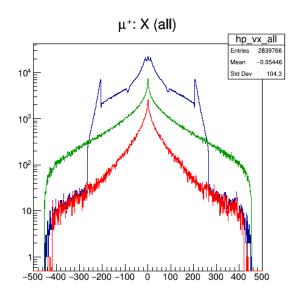


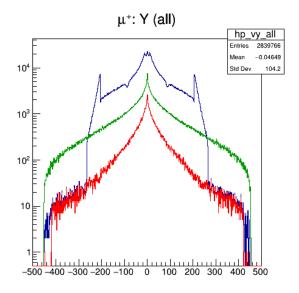


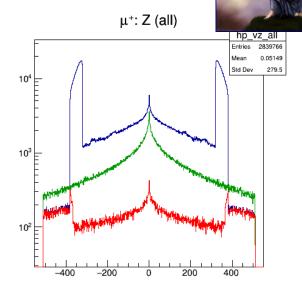


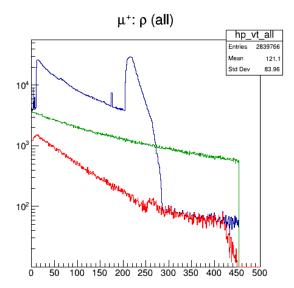


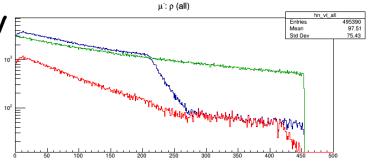

Drell-Yan studies with SPD. Status and Plans. Background studies.

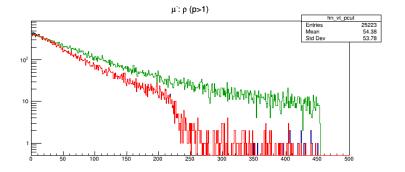


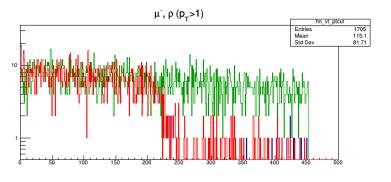

$$\rho = J(x^2 + y^2)$$

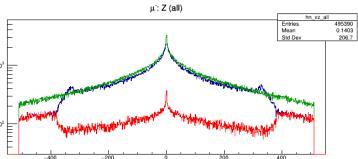


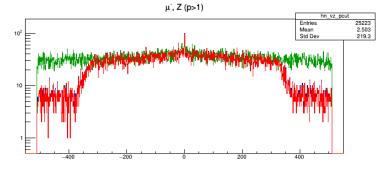

Drell-Yan studies with SPD. Status and Plans.Background studies.

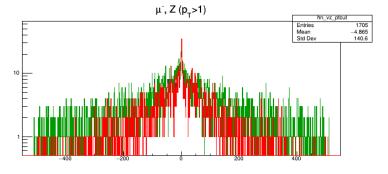


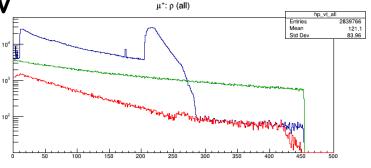

Drell-Yan studies with SPD. Status and Plans. Background studies.

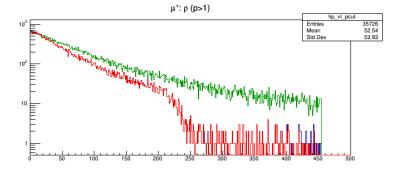


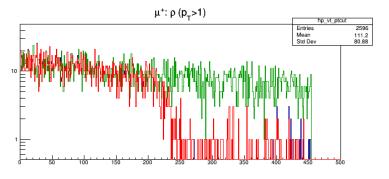

Cuts:

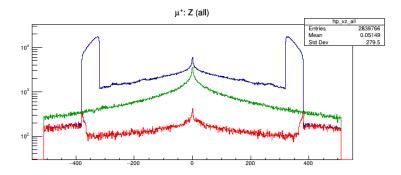

- p > 1GeV
- p_⊤ > 1 GeV

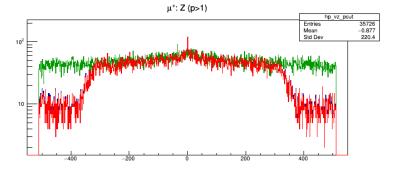


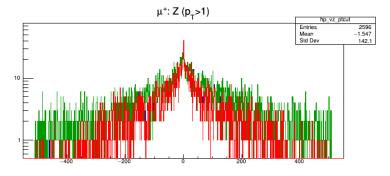


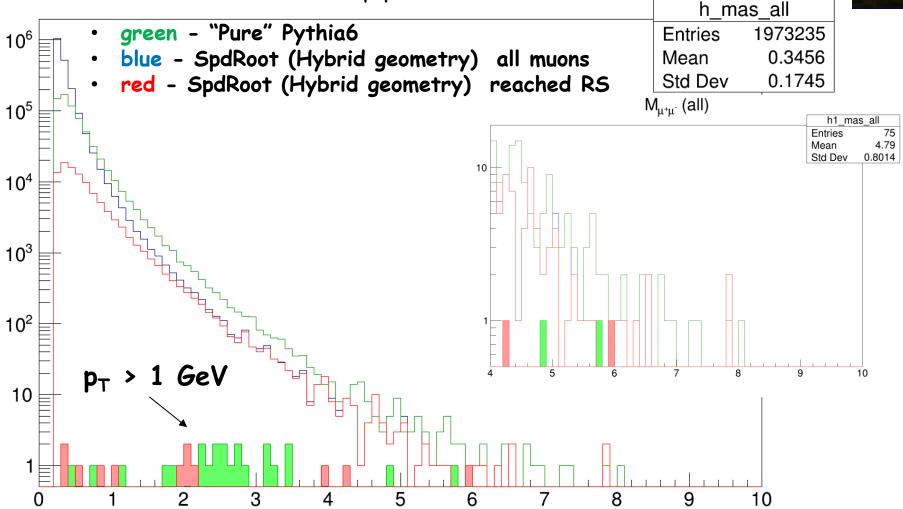

Drell-Yan studies with SPD. Status and Plans. Background studies.




Cuts:


- p > 1GeV
- p_T > 1 GeV





Background studies.

 $M_{\mu^{+}\mu^{-}}$ (all)

MC weighted asymmetries (like B-M).

N_{DY} generated events = 1×10^6 [4.0	->]
--	-----

- N muon pairs [4-9] = (PV) 100%
- N muon pairs [4-9] = (RS) 96 %

SETS	%
PV	100
RS	96.7
RS-BB	27.3
RS-EE	16.2
RS-BEEB	53.2

Hybrid set-up

•
$$4.0 \ GeV/c^2 < M_{\mu\mu} < 9.0 \ GeV/c^2$$

•
$$\langle P_h \rangle = 1.0$$

Boer-Mulders

weight =
$$\sigma_0 + kP \cos 2\varphi_{CS}$$

$$\sigma_0 = 1.0$$

$$k = 0.5$$

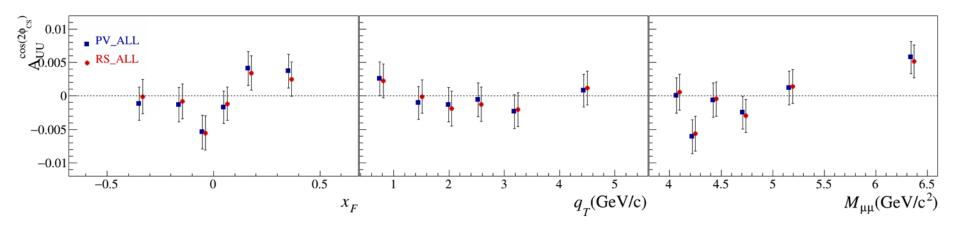
$$P = \pm 1$$

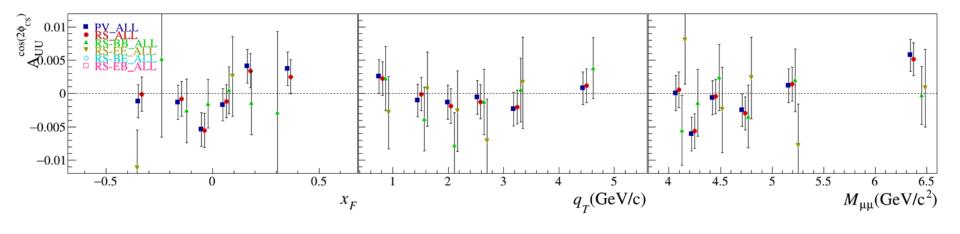
$$A = \frac{N_{w,2} - N_{w,1}}{N_{w,2} + N_{w,1}}$$

$$N_{w,1} = \sum_{1}^{N_1} (\sigma_0 - k \cos 2\varphi_{CS})$$

$$N_{w,1} = \sum_{1}^{N_1} (\sigma_0 - k \cos 2\varphi_{CS})$$

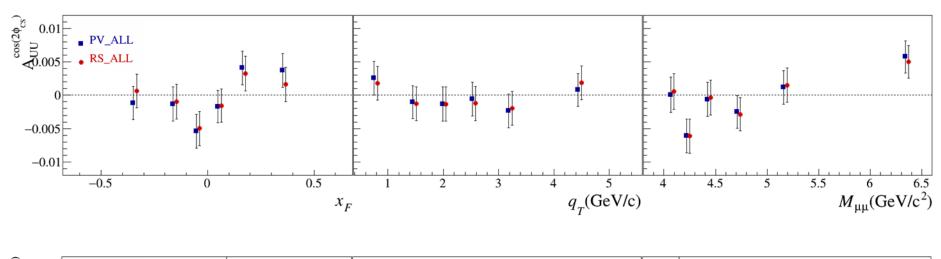
$$N_{w,2} = \sum_{1}^{N_2} (\sigma_0 + k \cos 2\varphi_{CS})$$

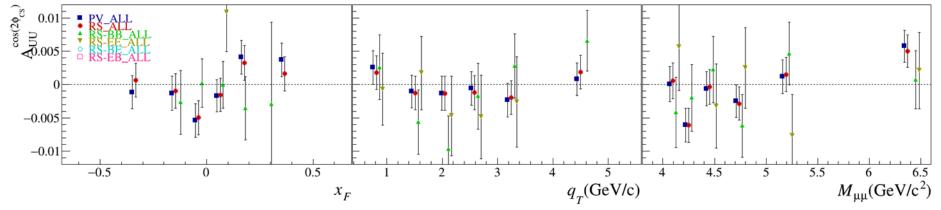

$$dA = \frac{1}{\sqrt{N_1 + N_2}}$$



MC weighted asymmetries(like B-M).

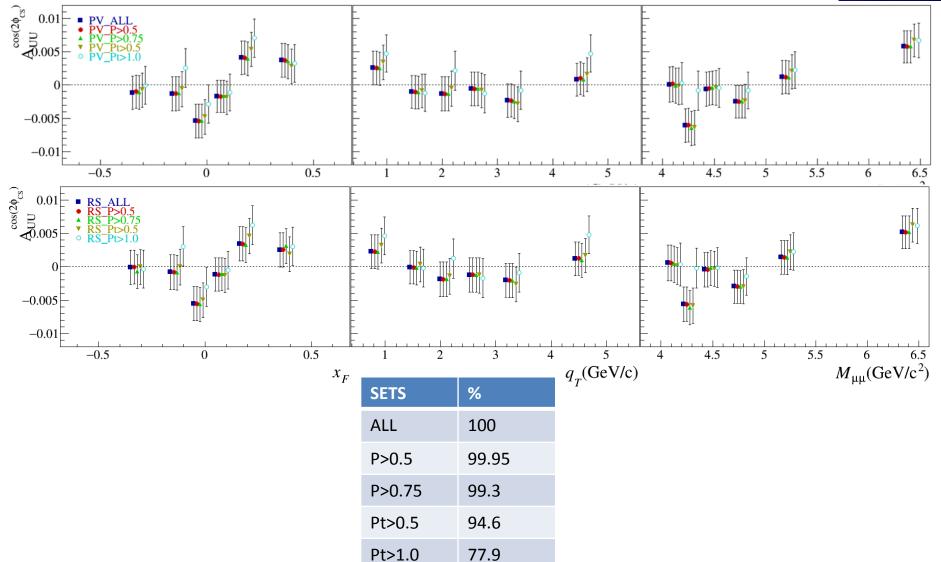
Standart Magnetic field map in SPDRoot



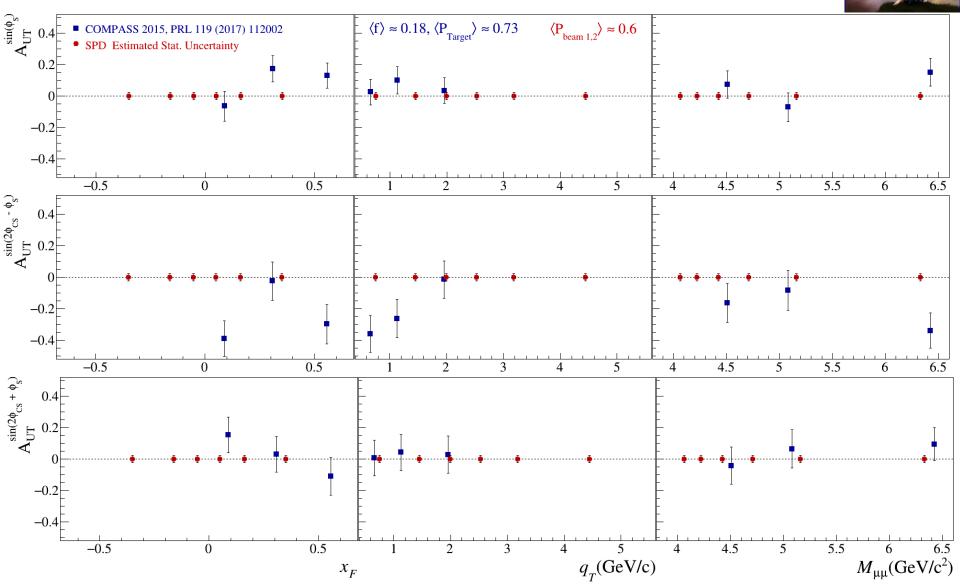


MC weighted asymmetries(like B-M).

Magnetic field map in SPDRoot x2



MC weighted asymmetries(like B-M).


Standart Magnetic field map in SPDRoot

MC weighted asymmetries (comparison with COMPASS).

Some estimations and proposals.

For BG studies:

- one needs to add materials as possible;
- responses in ECAL and RS;
- tracking;
- vertex;
- PID for DY via e+e-(aerogel blocks or other)

For ASYM studies:

- one needs to have preliminary tracking;
- magnet field maps (toroid vs solenoid);
- theoretical predictions on asyms for NICA;

From NICA:

- one needs to have solid parameters of NICA (lumi, Nbanches etc);
- Beam structure (IP sizes etc);
- Estimations on polarization's values;
- Run time (statistics).

- Background studies cuts, vertex, tracking dets, PID dets, beam params etc
- MC asymmetries studies
- Estimation of feasibility of exclusive DY
- Deuteron tensor structure via DY

Results on all tasks have to be done for the end of September 2019

DY Team:

Akhunzyanov Ruslan Gribowsky Alexandr Ivanov Artem Mescheryakov Gleb Nagaytsev Alexander

welcome to join

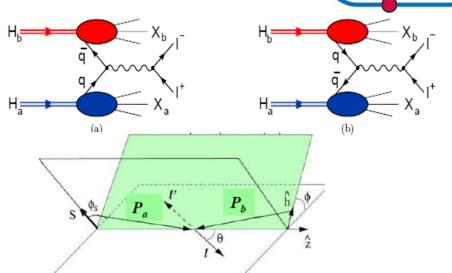
Backup slides

Drell-Yan studies with SPD.

(et	nucleon	NUCLEON	
-	unpolarized	longitudinally pol.	transversely pol.
l. unpolarized	f ₁		f¹T ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
QUARK		g _{1L}	g _{1T}
QUARK ransversely pol.longitudinally pol.	hi k _r • • Boer-Mulders	h _{IL}	h ₁

3 PDFs are needed to describe nucleon structure in collinear approximation

8 PDFs are needed if we want to take into account intrinsic transverse momentum k_T of quarks


T-odd

chiral-odd

$$\begin{split} &\frac{d\sigma}{dx_a dx_b d^2q_T d\Omega} = \frac{\alpha^2}{4Q^2} \times \\ &\Big\{ \Big((1 + \cos^2\theta) F_{UU}^1 + \sin^2\theta \cos 2\phi F_{UU}^{\cos 2\phi} \Big) + S_{aL} \sin^2\theta \sin 2\phi F_{LU}^{\sin 2\phi} + S_{bL} \sin^2\theta \sin 2\phi F_{UL}^{\sin 2\phi} \\ &+ \left| \vec{S}_{aT} \right| \left[\sin(\phi - \phi_{S_a}) \left(1 + \cos^2\theta \right) F_{TU}^{\sin(\phi - \phi_{S_a})} + \sin^2\theta \left(\sin(3\phi - \phi_{S_a}) F_{TU}^{\sin(3\phi - \phi_{S_a})} + \sin(\phi + \phi_{S_a}) F_{TU}^{\sin(\phi + \phi_{S_a})} \right) \Big] \\ &+ \left| \vec{S}_{bT} \right| \left[\sin(\phi - \phi_{S_a}) \left(1 + \cos^2\theta \right) F_{UT}^{\sin(\phi - \phi_{S_a})} + \sin^2\theta \left(\sin(3\phi - \phi_{S_a}) F_{TU}^{\sin(3\phi - \phi_{S_a})} + \sin(\phi + \phi_{S_a}) F_{TU}^{\sin(\phi + \phi_{S_a})} \right) \Big] \\ &+ S_{aL} S_{bL} \left[\left(1 + \cos^2\theta \right) F_{LL}^{1} + \sin^2\theta \cos 2\phi F_{LL}^{\cos 2\phi} \right] \\ &+ S_{aL} \left| \vec{S}_{bT} \right| \left[\cos(\phi - \phi_{S_a}) \left(1 + \cos^2\theta \right) F_{LT}^{\cos(\phi - \phi_{S_a})} + \sin^2\theta \left(\cos(3\phi - \phi_{S_a}) F_{LT}^{\cos(3\phi - \phi_{S_a})} + \cos(\phi + \phi_{S_a}) F_{LT}^{\cos(\phi + \phi_{S_a})} \right) \Big] \\ &+ \left| \vec{S}_{aT} \right| \left| \vec{S}_{bT} \left[\cos(\phi - \phi_{S_a}) \left(1 + \cos^2\theta \right) F_{TL}^{\cos(\phi - \phi_{S_a})} + \sin^2\theta \left(\cos(3\phi - \phi_{S_a}) F_{TL}^{\cos(3\phi - \phi_{S_a})} + \cos(\phi + \phi_{S_a}) F_{TL}^{\cos(\phi + \phi_{S_a})} \right) \right] \\ &+ \left| \vec{S}_{aT} \right| \left| \vec{S}_{bT} \left[\left[(1 + \cos^2\theta) \left(\cos(2\phi - \phi_{S_a} - \phi_{S_a}) F_{TT}^{\cos(2\phi - \phi_{S_a} - \phi_{S_a})} + \cos(\phi_{S_a} - \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a})} \right) \right] \\ &+ \left| \vec{S}_{aT} \right| \left| \vec{S}_{bT} \left[\left[\sin^2\theta \left(\cos(2\phi - \phi_{S_a} + \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a} + \phi_{S_a})} + \cos(\phi + \phi_{S_a} - \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a} - \phi_{S_a})} \right) \right] \right. \\ &+ \left| \vec{S}_{aT} \right| \left| \vec{S}_{bT} \left[\left[\sin^2\theta \left(\cos(2\phi - \phi_{S_a} + \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a} + \phi_{S_a})} + \cos(\phi + \phi_{S_a} - \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a} - \phi_{S_a})} \right) \right] \right. \\ &+ \left| \vec{S}_{aT} \right| \left| \vec{S}_{bT} \left[\left[\sin^2\theta \left(\cos(2\phi - \phi_{S_a} + \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a} + \phi_{S_a})} + \cos(\phi + \phi_{S_a} - \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a} - \phi_{S_a})} \right) \right] \right. \\ &+ \left| \vec{S}_{aT} \right| \left| \vec{S}_{bT} \left[\sin^2\theta \left(\cos(2\phi - \phi_{S_a} + \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a} + \phi_{S_a})} + \cos(\phi + \phi_{S_a} - \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a} - \phi_{S_a})} \right) \right] \right. \\ &+ \left| \vec{S}_{aT} \right| \left[\vec{S}_{bT} \left[\sin^2\theta \left(\cos(2\phi - \phi_{S_a} + \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a} + \phi_{S_a})} + \cos(\phi + \phi_{S_a} - \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a} - \phi_{S_a})} \right) \right] \right. \\ &+ \left| \vec{S}_{aT} \right|$$

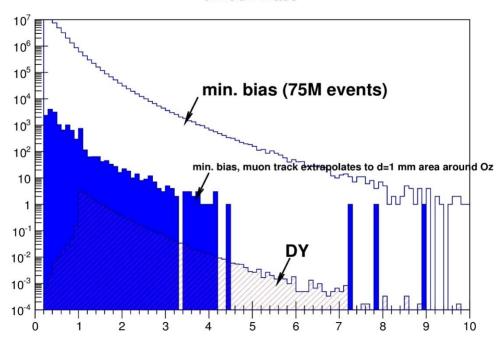
depend on four variables $P_a \cdot q$, $P_b \cdot q$, $\mathbf{q_T}$ and q^2 or on $\mathbf{q_T}$, q^2 and the Bjorken variables of colliding hadrons, x_a , x_b ,

$$x_a = \frac{q^2}{2P_a \cdot q} = \sqrt{\frac{q^2}{s}} e^y, \ x_b = \frac{q^2}{2P_b \cdot q} = \sqrt{\frac{q^2}{s}} e^{-y}, \ y \text{ is the CM rapidity and}$$

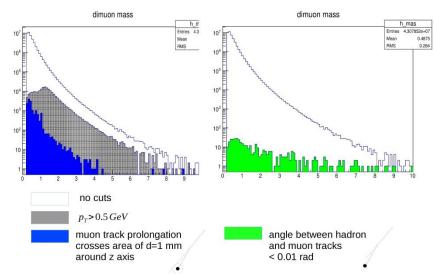
The cross section cannot be measured directly because there is no single beam containing particles with the U, L and T polarization. To measure SFs entering this equation one can use the following procedure: first, to integrate cross section over the azimuthal angle Φs , second, following the SIDIS practice, to measure azimuthal asymmetries of the DY pair's production cross sections. The integration over the azimuthal angle Φ gives:

$$\begin{split} & \sigma_{int} \equiv \frac{d\sigma}{dx_{a} dx_{b} d^{2}q_{T} d\cos\theta} = \frac{\pi\alpha^{2}}{2q^{2}} \times \left(1 + \cos^{2}\theta\right) \left[F_{UU}^{1} + S_{aL}S_{bL}F_{LL}^{1} + \left|\vec{S}_{aT}\right| \left|\vec{S}_{bT}\right| \left(\cos(\phi_{S_{b}} - \phi_{S_{a}})F_{TT}^{\cos(\phi_{S_{b}} - \phi_{S_{a}})} + D\cos(\phi_{S_{a}} + \phi_{S_{b}})F_{TT}^{\cos(\phi_{S_{a}} + \phi_{S_{b}})}\right)\right] \end{split}$$

Drell-Yan studies with SPD.



DY background studies


DY and min bias events were generated with PYTHIA 6

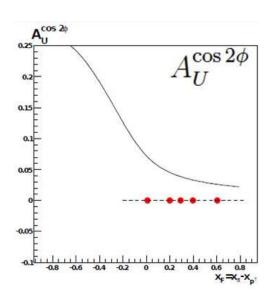
- 2 proton beams with E=12 GeV
- Only process $q \overline{q} \rightarrow \gamma^* \rightarrow \mu^+ \mu^-$
- m___>1 GeV
- Decays of π^{\pm} , K^{\pm} , K_L^0 turned on
- 105 events
- $\sigma_{tot} = 8.7 \, nb$ (ratio $\sigma_{tot}(MB)/\sigma_{tot}(DY) \approx 4.5 \cdot 10^6$)
- Only muons produced in volume with L=8 m and D=7 m were taken into account.
- (For $m_{uu} > 3 \, GeV \, \sigma_{tot} = 0.23 \, nb$)

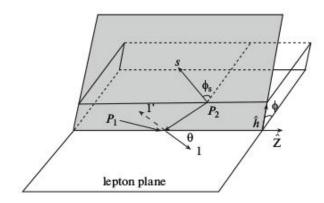
dimuon mass

- PYTHIA 6
- MSEL=2
- 2 proton beams with E=12 GeV
- Decays of π^{\pm} , K^{\pm} , K_L^0 turned on
- 75.106 events
- $\sigma_{tot} = 39.4 \, mb$

Tracking system has to be done with very high efficiency to reduce DY background.

~1:60 signal/background


Drell-Yan studies with SPD.


At LO the general expression of the DY cross-section simplifies to (5. Arnold, et al, Phys.Rev. D79 (2009) 034004):

 $A_U^{\cos 2\varphi}$

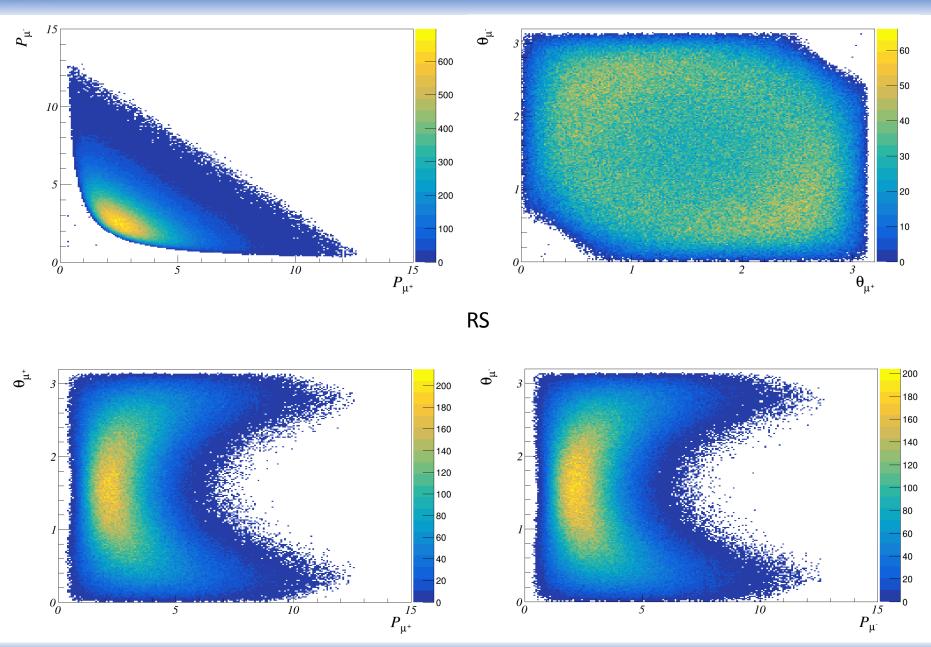
- gives access to the Boer-Mulders function

$$\begin{split} \frac{d\sigma^{LO}}{d^4qd\Omega} &= \frac{\alpha_{em}^2}{Fq^2} \widehat{\sigma}_U^{LO} \left\{ \left(1 + D_{\left[\sin^2\theta\right]}^{LO} A_U^{\cos2\phi} \cos2\phi \right) \right. \\ &+ \left. \left| \vec{S}_T \right| \left[A_T^{\sin\phi_S} \sin\phi_S \right. \\ &+ D_{\left[\sin^2\theta\right]}^{LO} \left(A_T^{\sin(2\phi + \phi_S)} \sin(2\phi + \phi_S) \right. \\ &+ A_T^{\sin(2\phi - \phi_S)} \sin(2\phi - \phi_S) \right) \right] \right\} \end{split}$$

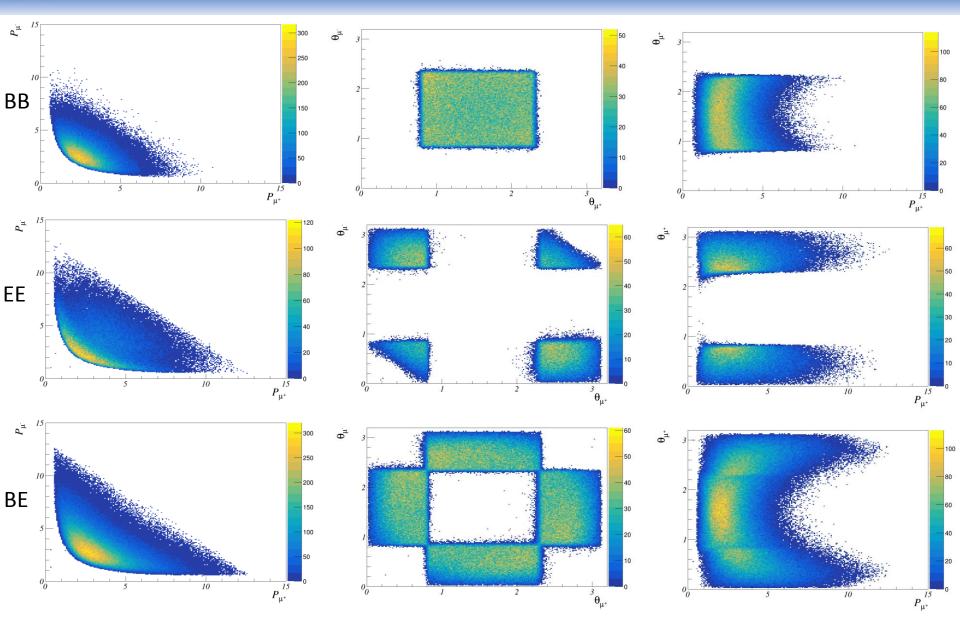
Definition of angles in Collins-Soper reference frame.

For MC studies we can take Boer-Mulders asymmetry as reference function via weights, and extract this asymmetry from simulated MC data after simplified SPD set-up with two magnet systems. The toroidal system must be checked most thoroughly since it is a new one.

Future DY experiments


The SPD experiments will have a number of advantages for DY measurements related to nucleon structure studies.

These advantages include:


- operations with pp, pd and dd beams,
- scan of effects on beam energies,
- measurement of effects via muon and electron-positron pairs simultaneously,
- operations with non-polarized, transverse and longitudinally polarized beams or their combinations.

Such possibilities permit for the first time to perform comprehensive studies of all leading twist PDFs of nucleons in a single experiment with minimum systematic errors.

Experiment	CERN, COMPASS-II	FAIR, PANDA	FNAL, E-906	RHIC, STAR	RHIC- PHENIX	NICA, SPD
mode	fixed target	fixed target	fixed target	collider	collider	collider
Beam/target	π- , p	anti-p,p	π-, p	pp	pp	pp, pD,DD
Polarization: beam, target	0; ~ 0.8	0; 0	0; 0;	0.5; 0.5	0.5; 0.5	0.5; 0.5
Luminosity, cm ⁻² s ⁻¹	10 ³²	10 ³²	1042	1032	1032	1032
\sqrt{s} , GeV	17	6	16	200	200	10-26
x _{1(beam)} x _{2(targ)} ranges	0.1-1.0; 0.5-0.9	0.1-1.0; 0.3-0.8	0.1-1.0; 0.3-0.8	0.1-0.9; 0.1-0.9	0.1-0.9; 0.1-0.9	0.1-0.8; 0.1-0.8
q _T , GeV	0.5 -4.0	0.5 -1.5	0.5 -3.0	1.0 -10.0	1.0 -10.0	0.5 -6.0
Lepton pairs,	μ-μ+	μ-μ+	μ-μ+	μ-μ+	μ-μ+	μ-μ+, e+e-
Data taking	2014	>2018	2013	>2016	>2016	>2017
Transversity PDF	YES	NO	NO	YES	YES	YES
Boer-Mulders PDF	YES, valence, $h_{l(\pi)}^{\perp} \otimes h_{l(p)}^{\perp}$	YES	YES	YES	YES	YES
Sivers PDF	YES, π PDF	YES	YES	YES	YES	YES
Pretzelosity PDF	YES	NO	NO	NO	YES	YES
Worm Gear PDFs	YES	NO	NO	NO	NO	YES
Duality, J/Ψ	YES	YES	NO	NO	NO	YES
Flavour decomposition	NO	NO	YES	NO	NO	YES
Lam-Tung relation	NO	NO	NO	NO	NO	YES

DY

