
 

Bernd Surrow

Bernd Surrow
Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012

1

Recent STAR results on the                               
gluon polarization program

in 
high-energy polarized p+p collisions 

at RHIC



 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Outline

Theoretical 
foundation

2

⇥p ⇥p

Experimental aspects: 
RHIC /STAR 

Summary 
and 
Outlook

Selected recent results and future 
prospects: Gluon polarization



 (GeV/c)
T

Particle Jet p
0 5 10 15 20 25 30 35

LL
Je

t A

-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

8.8% scale uncertainty from polarization not shown±

|<1η jet+X   |→ p+p=200 GeV   s

DSSV
GRSV-STD
GRSV-ZERO

+2% Uncert2χDSSV 
Relative Luminosity Uncert
2009 STAR Preliminary
2006 STAR

 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Outline

Theoretical 
foundation

2

⇥p ⇥p

Experimental aspects: 
RHIC /STAR 

Summary 
and 
Outlook

Selected recent results and future 
prospects: Gluon polarization



 (GeV/c)
T

Particle Jet p
0 5 10 15 20 25 30 35

LL
Je

t A

-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

8.8% scale uncertainty from polarization not shown±

|<1η jet+X   |→ p+p=200 GeV   s

DSSV
GRSV-STD
GRSV-ZERO

+2% Uncert2χDSSV 
Relative Luminosity Uncert
2009 STAR Preliminary
2006 STAR

 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Outline

Theoretical 
foundation

2

⇥p ⇥p

Experimental aspects: 
RHIC /STAR 

Summary 
and 
Outlook

Selected recent results and future 
prospects: Gluon polarization



e�

X

e

p

x
Q2

W 2 � Q2/x

d�ep � F2 =
�

q

xe2
qfq(x)

 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

3

M
om

en
tu

m
 

co
nt

ri
bu

ti
on

f(x) =

f+(x) + f�(x)

+

Spin 
contribution

�f(x) =

f+(x)� f�(x)

�

How do we probe the structure and dynamics of matter in ep vs. pp scattering? 
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Spin sum rule:

�⇥ = �u + �ū + �d + �d̄ + �s + �s̄

(R.L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990))

�qi(Q2) =
� 1

0
�qi(x,Q2)dx �G(Q2) =

� 1

0
�g(x,Q2)dx
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The value of  F2/(1 + R)  for x < 0.03 was taken to be constant  as expected from 
Regge theory [46] and as confirmed experimentally up to Q 2 =  7 GeV 2 [471. The 
da ta  in fig. 12 tend to be constant  (within errors) for x < 0.2 as predicted from 
simple Regge theory [46, 48]. 

9. The integral of gP over x 

9.1. THE EMC DATA ALONE 

In integrat ing gP over x the values of  A 1 were assumed constant  over each x bin, 
but  the funct ion F 2 / 2 x ( 1  + R )  was integrated numerically for each bin because of 
its rapid variat ion for x > 0.3. Fig. 13 shows the values of  this integral f rom the low 
edge of  each bin to x = 1, plotted against the low edge of  the bin, together with the 
data  f rom SLAC [2, 3]. The inner and outer error bars are the statistical and total 
errors. It should be noted that the errors are cumulative, i.e. each error contains the 
cont r ibut ion  from all the previous points at higher x. The normalisation error is 
included in the total error. The smooth curve is the integral obtained by using the 
parameter isa t ion of  A 1 (eq. (34)) which was used to estimate the contributions from 
the regions in x not covered by the data, i.e. x < 0.01 and x > 0.7. 

It can be seen that contributions from the lower x bins are small and the integral 
converges well. The values of  the integral shown in fig. 13 were obtained using a 
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low edge of each bin. 
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�⇥ = �u + �ū + �d + �d̄ + �s + �s̄

(R.L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990))

�qi(Q2) =
� 1

0
�qi(x,Q2)dx �G(Q2) =

� 1

0
�g(x,Q2)dx

�� = 0.242 (Q2 = 10GeV2)
(D. deFlorian et al., Phys. Rev. D80, 034030 (2009))

J. Ashman et al. / Spin structure of proton 27 

The value of  F2/(1 + R)  for x < 0.03 was taken to be constant  as expected from 
Regge theory [46] and as confirmed experimentally up to Q 2 =  7 GeV 2 [471. The 
da ta  in fig. 12 tend to be constant  (within errors) for x < 0.2 as predicted from 
simple Regge theory [46, 48]. 

9. The integral of gP over x 

9.1. THE EMC DATA ALONE 

In integrat ing gP over x the values of  A 1 were assumed constant  over each x bin, 
but  the funct ion F 2 / 2 x ( 1  + R )  was integrated numerically for each bin because of 
its rapid variat ion for x > 0.3. Fig. 13 shows the values of  this integral f rom the low 
edge of  each bin to x = 1, plotted against the low edge of  the bin, together with the 
data  f rom SLAC [2, 3]. The inner and outer error bars are the statistical and total 
errors. It should be noted that the errors are cumulative, i.e. each error contains the 
cont r ibut ion  from all the previous points at higher x. The normalisation error is 
included in the total error. The smooth curve is the integral obtained by using the 
parameter isa t ion of  A 1 (eq. (34)) which was used to estimate the contributions from 
the regions in x not covered by the data, i.e. x < 0.01 and x > 0.7. 

It can be seen that contributions from the lower x bins are small and the integral 
converges well. The values of  the integral shown in fig. 13 were obtained using a 

fill 
0.15[ -  

X 
"-¢3 
"~  0.12 

0 3  I~ 
~_..... x 0.09 

0.06 

0.03 

ELLIS-JAFFE SUM RULE 

i I, This exper iment  

SLAC [ 2 - 3 ]  

0.01 

t+?.O.o I I 1 I 
0.02 0.05 0.1 0.2 0.5 1.0 

Xm 

Fig. 13. The convergence of the integral f),,gF dx as a function of x m, where x m is the value of x at the 
low edge of each bin. 

HERM
ES

CLAS

gp
1 =

1
2

�

i

e2
qi

�qi
1
2

= �Sq⇥ + �Sg⇥ + �Lq⇥ + �Lg⇥



Current status:

Data only from fixed-target experiments (Limited 

reach in x and Q2) mostly at lower energy

Quark spin contribution is small (~25%):

1

2
�⌃

�G

 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Theoretical foundation
Picture of the proton from polarized ep scattering

4

Spin sum rule:
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parabola and the 1σ uncertainty in any observable would correspond to ∆χ2 = 1. In order to account for unexpected
sources of uncertainty, in modern unpolarized global analysis it is customary to consider instead of ∆χ2 = 1 between
a 2% and a 5% variation in χ2 as conservative estimates of the range of uncertainty.

As expected in the ideal framework, the dependence of χ2 on the first moments of u and d resemble a parabola
(Figures 3a and 3b). The KKP curves are shifted upward almost six units relative to those from KRE, due to the
difference in χ2 of their respective best fits. Although this means that the overall goodness of KKP fit is poorer than
KRE, δd and δu seem to be more tightly constrained. The estimates for δd computed with the respective best fits
are close and within the ∆χ2 = 1 range, suggesting something close to the ideal situation. However for δu, they only
overlap allowing a variation in ∆χ2 of the order of a 2%. This is a very good example of how the ∆χ2 = 1 does not
seem to apply due to an unaccounted source of uncertainty: the differences between the available sets of fragmentation
functions.
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An interesting thing to notice is that almost all the variation in χ2 comes from the comparison to pSIDIS data.
The partial χ2 value computed only with inclusive data, χ2

pDIS , is almost flat reflecting the fact the pDIS data are

not sensitive to u and d distributions. In Figure 3, we plot χ2
pDIS with an offset of 206 units as a dashed-dotted line.

The situation however changes dramatically when considering δs or δg as shown in Figures 3c and 3f, respectively.
In the case of the variation with respect to δs, the profile of χ2 is not at all quadratic, and the distribution is much
more tightly constrained (notice that the scale used for δs is almost four times smaller than the one used for light
sea quarks moments). The χ2

pDIS corresponding to inclusive data is more or less indifferent within an interval around
the best fit value and increases rapidly on the boundaries. This steep increase is related to a positivity constraints on
∆s and ∆g. pSIDIS data have a similar effect but also helps to define a minimum within the interval. The preferred
values for δs obtained from both NLO fits are very close, and in the case of KRE fits, it is also very close to those
obtained for δu and δd suggesting SU(3) symmetry.
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�G(Q2) =
� 1

0
�g(x,Q2)dx

�g < �g < +gExamine wide range in Δg:

GRSV-STD: Global QCD analysis of 
polarized DIS experiments only!   

�G(Q2 = 1GeV 2) � 1.8

�G(Q2 = 1GeV 2) � 0.4

M. Gluck et al. PRD 63 (2001) 094005.

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

2 4 6 8 10 12
pT (GeV)

A
LL

GRSV-MAX Δg = gmax

GRSV-STD Δg = gstd

-1<η<2 Inclusive π0 production

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

2 4 6 8 10 12
pT (GeV)

A
LL

-1<η<1 - Inclusive π+ / π-

GRSV π+

GRSV π-

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

5 10 15 20
pT (GeV)
A

LL

GRSV-ZERO Δg = 0
GRSV-MIN Δg = -gmax

-1<η<2 Inclusive jet production

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

5 10 15 20
pT (GeV)

A
LL

GRSV-MAX Δg = gmax

GRSV-STD Δg = gstd

-1<η<2 Inclusive γ production

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

2 4 6 8 10 12
pT (GeV)

A
LL

GRSV-MAX Δg = gmax

GRSV-STD Δg = gstd

-1<η<2 Inclusive π0 production

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

2 4 6 8 10 12
pT (GeV)

A
LL

-1<η<1 - Inclusive π+ / π-

GRSV π+

GRSV π-

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

5 10 15 20
pT (GeV)

A
LL

GRSV-ZERO Δg = 0
GRSV-MIN Δg = -gmax

-1<η<2 Inclusive jet production

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

5 10 15 20
pT (GeV)

A
LL

GRSV-MAX Δg = gmax

GRSV-STD Δg = gstd

-1<η<2 Inclusive γ production



 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Recent results - Gluon polarization program
Jet reconstruction / Inclusive Jet data sample

14

Jet algorithm:

Mid-point cone algorithm

Seed energy = 0.5GeV

Cone radius R = 0.7

Splitting/merge fraction = 0.5

Jet trigger: 

1 X 1 in Φ X η patches of 400 BEMC 

towers

Data sample:

2009 ALL analysis: L=20pb-1 / P=58% 

2006 cross-section: 5.39pb-1

R =
p

�⌘2 +��2

20

10
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Preliminary Run 6

STAR

Mid-rapidity Inclusive Jet cross-section measurement (Run 6)

Data are well described by NLO pQCD plus hadronization and 
underlying event corrections

Corrections are significant at low jet pT
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Mid-rapidity Inclusive Jet ALL measurement - Improved precision (Run 3/4, 5 and 6)



STAR Collaboration, Phys. Rev. Lett. 97 (2006) 252001.
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Mid-rapidity Inclusive Jet ALL measurement - Improved precision (Run 3/4, 5 and 6)



STAR Collaboration, Phys. Rev. Lett. 97 (2006) 252001.

 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Recent results - Gluon polarization program
16

Mid-rapidity Inclusive Jet ALL measurement - Improved precision (Run 3/4, 5 and 6)
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Mid-rapidity Inclusive Jet ALL measurement - Improved precision (Run 3/4, 5 and 6)

Improved precision 

in ALL from first 

Run 3/4 result to 

Run 5 and Run 6 

results
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Mid-rapidity Inclusive Jet ALL measurement - Improved precision (Run 3/4, 5 and 6)

Improved precision 

in ALL from first 

Run 3/4 result to 

Run 5 and Run 6 

results

Run 5/6 results 

lead to significant 

constrain on Δg in 

global analysis 

(DSSV)
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Mid-rapidity Inclusive Jet ALL measurement - Improved precision (Run 3/4, 5 and 6)

Improved precision 

in ALL from first 

Run 3/4 result to 

Run 5 and Run 6 

results

Run 5/6 results 

lead to significant 

constrain on Δg in 

global analysis 
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Next: Run 9
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Point-to-point systematics:

Non-collision background: 1.9 · 10-4

Residual transverse polarization: 6.4 · 10-4

Trigger and reconstruction bias: 15 · 10-4

Correlated systematics:

Relative luminosity: 15 · 10-4

Scale uncertainty from beam polarization: 8.8%

pT (horizontal) uncertainties: 4.6% 

False asymmetry consistent with zero!

Mid-rapidity Inclusive Jet ALL systematics (Run 9)
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Mid-rapidity Inclusive Jet ALL measurement (Run 9)
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Mid-rapidity Inclusive Jet ALL measurement (Run 9)
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Mid-rapidity Inclusive Jet ALL measurement (Run 9)

Run 6 ALL measurement 

between GRSV-STD and 

GRSV-ZERO
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Mid-rapidity Inclusive Jet ALL measurement (Run 9)

Run 6 ALL measurement 

between GRSV-STD and 

GRSV-ZERO

Run 9 ALL measurement 

between GRSV-STD and 

DSSV / Clearly above at low pT
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Mid-rapidity Inclusive Jet ALL measurement (Run 9)

Run 6 ALL measurement 

between GRSV-STD and 

GRSV-ZERO

Run 9 ALL measurement 

between GRSV-STD and 

DSSV / Clearly above at low pT
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Mid-rapidity Inclusive Jet ALL measurement (Run 9)

Run 6 ALL measurement 

between GRSV-STD and 

GRSV-ZERO

Run 9 ALL measurement 

between GRSV-STD and 

DSSV / Clearly above at low pT
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Mid-rapidity Inclusive Jet ALL measurement (Run 9)

Run 6 ALL measurement 

between GRSV-STD and 

GRSV-ZERO

Run 9 ALL measurement 

between GRSV-STD and 

DSSV / Clearly above at low pT
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Mid-rapidity Inclusive Jet ALL measurement (Run 9)

Run 6 ALL measurement 

between GRSV-STD and 

GRSV-ZERO

Run 9 ALL measurement 

between GRSV-STD and 

DSSV / Clearly above at low pT
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Mid-rapidity Inclusive Jet ALL measurement (Run 9)

Run 6 ALL measurement 

between GRSV-STD and 

GRSV-ZERO

Run 9 ALL measurement 

between GRSV-STD and 

DSSV / Clearly above at low pT

Truncated first moment  

constrained by Run 9 ALL data:  



 (GeV/c)
T

Particle Jet p
0 5 10 15 20 25 30 35

LL
Je

t A

-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

8.8% scale uncertainty from polarization not shown±

|<1η jet+X   |→ p+p=200 GeV   s

DSSV
GRSV-STD
GRSV-ZERO

+2% Uncert2χDSSV 
Relative Luminosity Uncert
2009 STAR Preliminary
2006 STAR

Preliminary Run 9

STAR

 (GeV/c)
T

Particle Jet p
0 5 10 15 20 25 30 35

LL
Je

t A

-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

8.8% scale uncertainty from polarization not shown±

|<1η jet+X   |→ p+p=200 GeV   s

DSSV
GRSV-STD
GRSV-ZERO

+2% Uncert2χDSSV 
Relative Luminosity Uncert
2009 STAR Preliminary
2006 STAR

Preliminary Run 9

STAR

 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Recent results - Gluon polarization program
18

Mid-rapidity Inclusive Jet ALL measurement (Run 9)

Run 6 ALL measurement 

between GRSV-STD and 

GRSV-ZERO

Run 9 ALL measurement 

between GRSV-STD and 

DSSV / Clearly above at low pT

Truncated first moment  

constrained by Run 9 ALL data:  

Z 0.2

0.05
�g(x,Q2 = 10GeV2)dx = 0.13

(D. deFlorian et al., 
Prog. Nucl. Part. Phys. 67, 251 (2012))



 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Recent results - Gluon polarization program
19

 (GeV/c)
T

Particle Jet p
0 5 10 15 20 25 30 35

LL
Je

t A

-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

8.8% scale uncertainty from polarization not shown±

|<1η jet+X   |→ p+p=200 GeV   s

DSSV
GRSV-ZERO

+2% Uncert2χDSSV 
Relative Luminosity Uncert
2009 STAR Preliminary

Preliminary Run 9

STAR

Mid-rapidity Inclusive Jet ALL measurement (Run 9)



 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Recent results - Gluon polarization program
19

Mid-rapidity Inclusive Jet ALL measurement (Run 9)



ALL separated into two η bins (|η|<0.5 and 0.5<|η|<1.0) 
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Preliminary Run 9

STAR

Preliminary Run 9

STAR

Mid-rapidity Inclusive Jet ALL measurement (Run 9)



ALL separated into two η bins (|η|<0.5 and 0.5<|η|<1.0) 

DSSV smaller at forward  η bin (0.5<|η|<1.0) compared to central bin (|η|<0.5)
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Preliminary Run 9

STAR

Preliminary Run 9

STAR

Mid-rapidity Inclusive Jet ALL measurement (Run 9)
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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FIG. 1: Comparison of RHIC data [3] and our fit. The shaded
bands correspond to ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).
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squared. To explore this further, Fig. 3 shows the χ2
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x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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ing [15], which still lack a proper NLO description. The
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7
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SMC SIDIS, h± 48 50.7
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SIDIS, π± 36 43.4
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COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2
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alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax
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at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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FIG. 2: Our polarized sea and gluon densities compared to
previous fits [4, 6]. The shaded bands correspond to alterna-
tive fits with ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).

but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating

Strong constraint on the size of Δg from RHIC data, in 
particular STAR jet results (Run 9)
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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previous fits [4, 6]. The shaded bands correspond to alterna-
tive fits with ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).

but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating

Strong constraint on the size of Δg from RHIC data, in 
particular STAR jet results (Run 9)

Strong indication for a small, non-zero ΔG! 
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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FIG. 2: Our polarized sea and gluon densities compared to
previous fits [4, 6]. The shaded bands correspond to alterna-
tive fits with ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).

but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating

Strong constraint on the size of Δg from RHIC data, in 
particular STAR jet results (Run 9)

Strong indication for a small, non-zero ΔG! 

Next steps: Mapping of x-dependence and extension of x-
coverage needed (Di-Jet measurements)!

��2 = 1

Z 0.2

0.05
�g(x,Q2 = 10GeV2)dx = 0.13

x ⇠ 2pTp
s

Q2 = 10GeV2
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Di-Jet reconstruction / Di-Jet data sample

Data/MC 

comparison: 

Good 

agreement 

in Minv and η

Data sample:

Run 9 ALL 

analysis: 

L=10pb-1 / 

P=58% 

Run 6 cross-

section: 

5.39pb-1

Preliminary Run 9

STAR
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Data are well 

described by 

NLO pQCD plus 

hadronization 

and underlying 

event 

corrections
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Mid-rapidity Di-Jet cross-section and ALL measurement (Run 6)

M =
p
s

p
x1x2 �3 + �4 = ln

x1

x2

First Di-Jet ALL 

measurement 

(Run 6) in 

agreement with 

Δg (DSSV)!
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p+ p ! jet + jet +X

p
s = 200 GeV

M =
p
s

p
x1x2 �3 + �4 = ln

x1

x2

Preliminary Run 9

STAR

Mid-rapidity Di-Jet kinematics (Run 9)
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η=0 η=1η=-1

East West
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Preliminary Run 9

STAR

�3 + �4 = ln
x1

x2

ALL measurements fall in-

between GRSV-STD and 

DSSV  - Above DSSV at low 

M similar to inclusive jet 

result at low pT

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East - East and West - West Barrel

MC GS-C(pdf set NLO)

2009 STAR Data

Systematic Uncertainties

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East Barrel - West Barrel

Scale uncertainty
GRSV std
DSSV

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

Full Acceptance

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East - East and West - West Barrel

MC GS-C(pdf set NLO)

2009 STAR Data

Systematic Uncertainties

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East Barrel - West Barrel

Scale uncertainty
GRSV std
DSSV

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

Full Acceptance

Mid-rapidity Di-Jet cross-section and ALL measurement (Run 9)



]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East - East and West - West Barrel

MC GS-C(pdf set NLO)

2009 STAR Data

Systematic Uncertainties

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East Barrel - West Barrel

Scale uncertainty
GRSV std
DSSV

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

Full Acceptance

M =
p
s

p
x1x2

 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Recent results - Gluon polarization program
24

Preliminary Run 9

STAR

�3 + �4 = ln
x1

x2

ALL measurements fall in-

between GRSV-STD and 

DSSV  - Above DSSV at low 

M similar to inclusive jet 

result at low pT

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East - East and West - West Barrel

MC GS-C(pdf set NLO)

2009 STAR Data

Systematic Uncertainties

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East Barrel - West Barrel

Scale uncertainty
GRSV std
DSSV

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

Full Acceptance

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East - East and West - West Barrel

MC GS-C(pdf set NLO)

2009 STAR Data

Systematic Uncertainties

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East Barrel - West Barrel

Scale uncertainty
GRSV std
DSSV

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

Full Acceptance

Mid-rapidity Di-Jet cross-section and ALL measurement (Run 9)



]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East - East and West - West Barrel

MC GS-C(pdf set NLO)

2009 STAR Data

Systematic Uncertainties

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East Barrel - West Barrel

Scale uncertainty
GRSV std
DSSV

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

Full Acceptance

M =
p
s

p
x1x2

 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Recent results - Gluon polarization program
24

Preliminary Run 9

STAR

�3 + �4 = ln
x1

x2

ALL measurements fall in-

between GRSV-STD and 

DSSV  - Above DSSV at low 

M similar to inclusive jet 

result at low pT

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East - East and West - West Barrel

MC GS-C(pdf set NLO)

2009 STAR Data

Systematic Uncertainties

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East Barrel - West Barrel

Scale uncertainty
GRSV std
DSSV

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

Full Acceptance

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East - East and West - West Barrel

MC GS-C(pdf set NLO)

2009 STAR Data

Systematic Uncertainties

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East Barrel - West Barrel

Scale uncertainty
GRSV std
DSSV

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

Full Acceptance

Mid-rapidity Di-Jet cross-section and ALL measurement (Run 9)



]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East - East and West - West Barrel

MC GS-C(pdf set NLO)

2009 STAR Data

Systematic Uncertainties

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

East Barrel - West Barrel

Scale uncertainty
GRSV std
DSSV

]2M [GeV/c
20 30 40 50 60 70 80

LL
A

-0.02

0

0.02

0.04

0.06

0.08

Full Acceptance

 

Spin 2012 / 20th International Spin Physics Symposium
Dubna, Russia, September 16-22, 2012 Bernd Surrow

Recent results - Gluon polarization program
First STAR Di-Jet ALL measurement in bins of η 

25

Preliminary Run 9

STAR

Run 9 data: First rapidity dependent 

di-jet measurement                                    

⇒ Constrain x dependence! 

Preliminary Run 9

STAR

Preliminary Run 9

STAR

M =
p
s

p
x1x2 �3 + �4 = ln

x1

x2

East West

η=0 η=1η=-1

East West

η=0 η=1η=-1
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Future Di-Jet / Inclusive Jet measurements

Access lower Bjorken-x region at 
500GeV ⇒ Expect smaller ALL

Important constrain from future 
Di-Jet and Inclusive Jet 
measurements

P=0.5 and Lrecorded=85pb-1

P=0.5 and Lrecorded=390pb-1
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Gluonx
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Direct impact on Δg(x)

Projections are for STAR EEMC -  STAR FMS will reach lower x region (Few 10-3)

200GeV: P=0.6 and Lrecorded=50pb-1 500GeV: P=0.5 and Lrecorded=300pb-1
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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FIG. 1: Comparison of RHIC data [3] and our fit. The shaded
bands correspond to ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).
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FIG. 2: Our polarized sea and gluon densities compared to
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but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating

DSSV

projection run 9-14

Q2 = 10 GeV2

DIS + RHIC ) run 6

mid-rap. jets, 200 GeV

GRSV std

x6g

x

-0.1

0

0.1

0.2

10 -1 1
Substantial improvement of Δg for x > 0.02 based on a combined 
Run 9 + Run 14 data sample of inclusive jet at √s=200GeV for |η|<1

M. Stratmann
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