Offline Software and Computing for the SPD experiment

Alexey Zhemchugov (JINR) on behalf of SPD Collaboration

08 July 2021

The 9th International Conference "Distributed Computing and Grid Technologies in Science and Education" (GRID'2021)

SPD at NICA

Alexey Zhemchugov on behalf of SPD Collaboration

Brief history of SPD

- 2007 idea of the project, SPD was included as an activity to the general list of NICA activities at JINR
- 2014 Letter of Intent (approved by the JINR Program Advisory Committee)
- 2016, 2018 SPD-oriented workshops in Prague
- 2019 SPD project is approved by PAC (till 2022)
- 2019 first proto-collaboration meeting
- 2020 Preparation of the Conceptual Design Report http://arxiv.org/abs/2102.00442
- 2021 SPD Collaboration was born. Preparation of the Technical Design Report
- 2025+ Start operation

Physics program

- SPD a universal facility for comprehensive study of gluon content in proton and deuteron at large x
 - Prompt photons
 - Charmonia
 - Open charm
- Other spin-related phenomena
- Other physics

More details in arXiv:2011.15005

Detector overview

Alexey Zhemchugov on behalf of SPD Collaboration

SPD as a data source

- Bunch crossing every 76.3 ns = crossing rate 13 MHz
- ~ 3 MHz event rate (at 10³² cm⁻
 ²s⁻¹ design luminosity) = pileups
- 20 GB/s (or 200 PB/year (raw data), 3*10¹³ events/year)
- Selection of physics signal requires momentum and vertex reconstruction → no simple trigger is possible

The SPD detector is a medium scale setup in size, but a large scale one in data rate!

Data workflow

Free-running DAQ

- No hardware trigger
- Self-triggered FEE digitizes data and sends it to DAQ
- Zero suppression
- Timestamp added
- Several FEE options are being considered, using experience of PANDA and COMPASS projects
- Data from FEE is collected and managed by FPGA-based DAQ system

FPGA-based free-running DAQ

- The concept is confirmed at Belle2 and COMPASS
- White Rabbit is used for time reference
- Identical DAQ modules (TCS, data concentrators, MUXs and switches) for all subsystems
 - only FPGA firmware is different
- Simple data treatment (e.g. noise removal) is possible

Input data structure

No trigger = No classical events anymore

Online Data Filter

High-performance heterogeneous computing cluster

- Partial reconstruction
 - Fast tracking and vertex reconstruction
 - Fast ECAL clustering
- Event unscrambling
- Software trigger
 - several data streams
- Monitoring and Data quality assessment
- Local polarimetry

Machine learning is a key technology

Online reconstruction

- Fast ML reconstruction
 - tracking
 - primary vertex reconstruction
 - ECAL clusters
 - π^0 reconstruction, ZDC, BBC for online polarimetry
 - RS tracks and showers
- python \rightarrow C++
- Continuous monitoring of the ML reco performance is needed to keep control of systematics
- Classic reconstruction: the same as ML reconstruction but using traditional algorithms for small fraction of data
- Assume that precise calibration constants and alignment are not available
- Assume that noise level is not known a priori

Example: TrackNETv2

Model Architecture

- Works like learnable version of the Kalman filter
- for the starting part of a track predicts an elliptical area at the next station where to search for the continuation
- if there is not continuation candidate track is thrown away

Results (BM@N experiment, NICA):

- 12K tracks/sec on Intel Core i3-4005U @1.70 Ghz
- 96% of tracks were reconstructed without any mistake

P.Goncharov, G. Ososkov et al. arXiv:1812.03859 Ososkov G.A. et al., Computer Research and Modeling, 2020, vol. 12, no. 6, pp. 1361-1381

Example: GraphNet

- An event is represented as a graph: hits become nodes of the graph
- The graph is transformed to a Reversed Directed Graph (RDGraph)
- GNN is trained using the RDGraph to find track segments

Ososkov G.A. et al., Computer Research and Modeling, 2020, vol. 12, no. 6, pp. 1361-1381

Main ingredients

- Input buffer: 20 GB/s write, 20 GB/s read, delete 5 files/s
- Output buffer: 2x400 MB/s write, 2x400 MB/s read
- Dispatcher
- Identical workers: multicore nodes with GPUs or FPGA co-processors. 1000 or 5000 WNs ?— depends on the performance of our algorithms!
- We should foresee using these computing resources for offline data processing between the data taking campaigns

The pilot

- Constantly runs at a WN
- Communicates with the dispatcher
- Copies data from the input buffer to the WN
- Calls the reconstruction software (ML, classic, merging — depends on the dispatcher's instruction)
- Copies the resulting file to the output buffer

The payload

HDF5 as a data format

- ROOT is a good format for the current approaches to the data analysis using ROOT
- Less good for the computing system
- Less good for the Python data analysis ecosystem
- Attempts to use HDF5 in FairRoot and Gaudi/Key4HEP (via Podio) were made already

A dedicated R&D to evaluate HDF5 as an intermediate data format for the SPD is needed

After the online filter

Computing system

All basic components are already available from LHC experiments:

- Workload management: likely PANDA
- Data management: RUCIO and FTS
- Software distribution: CVMFS

Adaptation to operate with the SPD event model and offline software is needed

SPD Offline Software

- Core Framework
- Detector Description
- Event Generators
- Simulation
- Reconstruction

Git repository: http://git.jinr.ru/nica/spdroot Documentation Wiki: https://git.jinr.ru/nica/spdroot/-/wikis/home

Core Framework: SpdRoot

Alexey Zhemchugov on behalf of SPD Collaboration

Simulation

- Virtual MC based on Geant4 backend
- Several options for the magnetic field
- Fast simulation exists for:
 - ITS, STS, ECAL, RS
 - No PID, ZDC, BBC ...
- Full simulation is not reasonable until the detector concept is fixed... but we expect it will happen rather soon!
- A lot of work to simulate the real detector, not an ideal one!

Reconstruction

Software R&D: Multithreading and alternative architectures

Goal: to improve the SPD algorithms and software to be able running at multicore machines and GPU and/or FPGA coprocessors

- Online Filter
- Simulation
- Reconstruction
- Core framework

Software R&D: FairRoot vs Gaudi

Goal: to evaluate Gaudi/Key4HEP as an SPD software framework

Basic functionality of these frameworks is very similar, but ...

	Gaudi/Key4HEP	FairRoot
Multithreading and alternative architectures	++	+
Support	+++ (HSF , ATLAS, LHCb, FCC)	+ (FAIR, NICA, ALICE?)
Use in real experiments	+++ (ATLAS, BESIII, LHCb)	+ (HADES, BM@N)

Software R&D: Conditions DB, Calib&Align

Goal: to develop a solution to handle geometry, conditions and calibration data

- The Database (10 PB/year ~ O(100000) running jobs)
- Geometry description
- Alignment
- Run info and conditions
- Calibration procedure and constants
- Integration to the computing system

Software R&D: Computing system prototype and a mock-up test

Goal: to demonstrate that the computing system is capable to handle the SPD data rate

- Information system
- Data management
- Task management
- Working prototype and a mock-up test of O(1 PB) scale (like a simulation of 1E9 events)
- Samara University's cluster "Sergey Korolev" is interested to join

Software & Computing R&D in 2021

- ML-based event reconstruction and an Online Filter prototype
- HDF5 as a data format
- Multithreading and alternative architectures
- FairRoot vs Gaudi
- Conditions DB, Calib&Align
- Computing system prototype and a mock-up test

Summary

- Preparation of the SPD experiment is making good progress.
- The SPD detector is a medium scale setup in size, but a large scale one in data rate. That poses a significant challenge both to the computing system and offline software.
- Efficient online filter and distributed computing system are the two keys to the success of SPD data processing.
- A lot of interesting problems to be solved. A lot of MSc/PhD theses to be prepared
- The main goal of the software project in 2021: TDR preparation
 - Software and computing infrastructure for simulation and reconstruction for physics studies
 - (Extremely interesting) R&D for the chapter 'Computing and Offline Software' for the TDR

Alexey Zhemchugov on behalf of SPD Collaboration

Straw tracker

- Spatial resolution ~150 μm
- Low material budget
- Operation in magnetic field of about 1 T
- dE/dx measurement

on

Particle identification systemTOF systemAerogel-based PID

mRPC-based Scintillator-based

Goals:

- π/K separation up to ~1.5 GeV
- K/p separation
- t_o determination

Requirements:

Time resolution ~60-70 ps

Goals:

• π/K separation up to 2.5 GeV range **Requirements:**

Alexey Zhemchugov on behalf of SPD Collaboration

Electromagnetic calorimeter

Goals:

- Detection of prompt photons, photons from π^{o} , η and χ_{c} decays
- Identification of electrons and positrons, participation in muon identification

Requirements:

- Granularity ~4 cm
- Low energy threshold (~50 MeV)
- Energy resolution Alexey Zhemchugov on behalf of SPD Collaboration

Range (muon) system

Local polarimetry and luminosity control

- Charged particles in BBC
- π^{o} in the end-cap part of ECAL
- Neutrons in ZDC

Requirements:

- Operation inside the beam pipe (inner part)
- Time resolution ~1 ns (inner) and ~400 ps (outer part)

Alexey Zhemchugov on behalf of SPD Collaboration