

The SPD (Spin Physics Detector) experiment at NICA

Alexander Korzenev, on behalf of the SPD Collaboration

DIS-2021 conference April 13, 2021

~300 authors from 23 institutes from 10 countries + individual contributors

SPD project at NICA (JINR, Dubna)

- SPD (Spin Physics Detector) is a universal facility with the primary goal to study unpolarized and polarized gluon content of proton and deuteron
- SPD project was approved by PAC and had its first protocollaboration meeting in 2019
- Conceptual Design Report (CDR) has been prepared at the end of 2020, *arXiv:2102.00442*
- Interaction with Detector Advisory Committee in 2021
- Technical Design Report (TDR) of SPD to be prepared in 2021-2022
- Beginning of datataking for SPD after 2025

Physics program of SPD

- A.Arbuzov et al, On the physics potential to study the gluon content of proton and deuteron at NICA SPD, arXiv:2011.15005
 - Probe gluon distributions in production of charmonia, open charm and prompt photons
- V.Abramov et al, Possible studies at the first stage of the NICA collider operation with polarized and unpolarized proton and deuteron beams, arXiv:2102.08477
 - Spin effects in elastic scattering and hyperon production, study of multiquark correlation, dibaryon resonances, exclusive reactions, open charm and charmonia near threshold, ...

Gluon probes at SPD

- A.Arbuzov et al, *On the physics potential to study the gluon content of proton and deuteron at NICA SPD*, arXiv:2011.15005
- Tests of TMD factorization
- Linearly polarized gluons in unpolarized nucleon
- Hadron structure and heavy charmonia production mechanisms
- Non-nucleonic degrees of freedom in deuteron
- Gluon polarization Δg with longitudinally polarized beams
- Gluon-related TMD and twist-3 effects with transversely polarized beams
- Gluon transversity in deuteron
- Deuteron tensor polarization and shear forces

SPD compared to other spin experiments

10

100

10²⁸

1

Experimental	SPD	RHIC [45]	EIC [36]	AFTER	LHCspin
facility	@NICA [41]			@LHC [34]	[35]
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	p^{\uparrow} - p^{\uparrow}	p^{\uparrow} - p^{\uparrow}	$e^{\uparrow}-p^{\uparrow}, d^{\uparrow}, {}^{3}\mathrm{He}^{\uparrow}$	$p extsf{-}p^\uparrow, d^\uparrow$	p - p^{\uparrow}
& polarization	d^{\uparrow} - d^{\uparrow}				
	p^{\uparrow} - d , p - d^{\uparrow}				
Center-of-mass	≤27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (<i>ep</i>)	115	115
energy $\sqrt{s_{NN}}$, GeV	≤13.5 (<i>d</i> - <i>d</i>)	500			
	≤19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	~0.1 (<i>d</i> - <i>d</i>)			$\sim \! 10 (p - p)$	
Physics run	>2025	running	>2030	>2025	>2025

Main present and future gluon-spin-physics experiments

- Access to intermediate and high values of Bjorken x
- Low energy but collider experiment (compared to fixed target). Nearly 4π coverage
- Two injector complexes available ⇒ mixed combinations p[↑]-d and p-d[↑] are possible

 \sqrt{s} , GeV

Superconductive magnetic system of SPD

SC cable used for magnets of Nuclotron

Magnetic field [kG] R [cm] 150 40 35 100 30 50 25 **1**T 20 -50 15 10 -100 -150 -200 -150 150 200 -100 -50 50 100 Z [cm]

- 6 isolated superconductive coils
 - Minimization of total amount of material
- Every coil consists of 60 turns of NbTiCu cable with the 10 kA current
 - Total current: $60 \times 10 \text{ kA} = 600 \text{ kA} \cdot \text{turn}$
- The same cable as used in Nuclotron magnets: hollow superconductor with the two-phase helium flows inside (~4.5 K)
- Similar cryogenic system as the one of Nuclotron

7

Tracking system of SPD

- Purpose: reconstruction of D meson decay vertices
- 5 layers = 2 DSSD + 3 MAPS
 - Double Side Silicone Strip (DSSD), 300 μm thickness, strip pitch 95 μm - 281 μm
 - Monolithic Active Pixel Sensors (MAPS) designed for ALICE, pixel size 29 μm × 27 μm
- Low material budget
- Vertex spatial resolution < 100 μ m
- Use of MAPS improves the signal-to-background ratio of D meson peak by a factor of 3

- Main tracker system of SPD
- Maximum drift time of 120 ns for \emptyset =10mm straw
- Spatial resolution of 150 µm
- Expected DAQ rate up to half MHz (electronics is limiting factor)
- Number of readout channels ~50k
- Can be used for PID if energy deposition if detected
- Extensive experience in straw production in JINR for various experiments (NA58, NA62, NA64...)

Particle Identification (PID) system

PID analysis in SPD (π , K, p)

π/K separation

- Short tracks (R<1m) to be identified by straw up to 0.7 GeV/c
- Long tracks (R>1m) to be identified by straw+TOF up to 1.5 GeV/c
- tracks with p>1.5 GeV/c to be identified by aerogel

- Purpose: detection of prompt photons and photons from π^0 , η and χ_c decays
- Identification of electrons and positrons
- Number of radiation lengths 18.6X₀
- Total weight is 40t (barrel) + 28t (endcap) = 68t
- Total number of channels is ~30k
- Energy resolution is $\sim 5\% / \sqrt{E}$
- Low energy threshold is ~50 MeV
- Time resolution is ~0.5 ns

Range System (RS)

17 layers of Fe (3-6 cm) interleaved with 3.5 cm gaps for Mini Drift Tube detectors

- Purposes: μ identification, rough hadron calorimetry
- Used as a yoke for the return field
- Total mass ~800 t, at least $4\lambda_I$
- The design follow closely the one of PANDA
- MDT provide 2 coordinate readout (~100 kch)
 - Al extruded comb-like 8-cell profile with anode wires + external electrodes (strips) perpendicular to the wires

Local polarimetry and luminosity control

Beam Beam Counter (BBC) Zero Degree Calorimeter (ZDC) • ZDC will be integrated in the cryostat placed between BBC consists of inner and outer parts \bullet two vertically deflecting magnets, 14m from IP • Inner part: Micro-Channel Plates (MCP) located in the vacuum of the beam pipe, 1.4 m from IP Sampling calorimeter with fine segmentation, 5x5 matrix lacksquareSiPM light readout, about 1000 channels • Outer part: plastic scintillator tiles with SiPM ۲ readout, 1.4 m from IP • Readout based on electronics designed for the DANSS $A_N vs x_F in \pi$ Production neutrino experiment at Kaliniskaya NPP (FNAL 1991) <u>SiPM</u> Absorber Scintillator Front view scint. 5×5 **Beam pipe** EM part Hadron part МСР Scintillator tiles

oĽ

MC study: prompt photon production

- Clean probe to study the Sivers DF and twist-3 correlation functions
- Proceeds without fragmentation ⇒ is exempt from the Collins effect
- Disagreement of theory and data at high $x_{\rm T}$
- Main source of background: photons from decays of secondary π^0 and η . The rest of the decays contributes on the level of 3%
- Quark and gluon SF contributions were estimated separately within GPM

MC study: open charm production

Conclusions

- NICA collider will start operation at JINR/Dubna in 2022
 - CM energy scan from few GeV to 27 GeV in *pp* mode
 - Measurements with *pp*, *pd* and *dd* beams
 - All configurations for the beam polarization: U, L, T
- SPD (Spin Physics Detector) is a universal facility with the primary goal to study unpolarized and polarized gluon content of *p* and *d*
 - Main probes: charmonia, open charm and prompt photons
 - 4π detector will be equipped with silicon detector, straw tracker, TOF (+aerogel) for PID, calorimetry and muon system
- Conceptual Design Report and physics program were released this winter
 - Proposed program cover at least 5 years of data taking
- Preparation of the Technical Design Report and detector prototyping in 2021-2022
- First data of SPD after 2025

spare slides

Aerial view to NICA

SPD experimental hall

- Infrastructure development is ongoing: modernization of power supply system, upgrade of plants for liquid helium and nitrogen production, construction of new buildings
- Plans for the SPD hall for this year: complete work on the interior, make crane in operation

Possible studies at the first stage of the NICA collider operation with polarized and unpolarized proton and deuteron beams, *arXiv:2102.08477*

А. V. I	 V.V. Abramov¹, A. Aleshko², V.A. Baskov³, E. Boos², V. Bunichev², O.D. Dalkarov³, R. El-Kholy⁴, A. Galoyan⁵, A.V. Guskov V.T. Kim^{7,8}, E. Kokoulina^{5,9}, I.A. Koop^{10,11,12}, B.F. Kostenko¹³, D. Kovalenko⁵, V.P. Ladygin⁵, A. B. Larionov^{14,15}, A.I. L'vov³, A.I. Milster V.A. Nikitin⁵, N. N. Nikolaev^{16,26}, A. S. Popov¹⁰, V.V. Polyanskiy³, JM. Richard¹⁷, S. G. Salnikov¹⁰, A.A. Shavrin¹⁸, P. Yu. Shatunov^{10,11}, Yu.M. Shatunov^{10,11}, O.V. Selyugin¹⁴, M. Strikman¹⁹, E. Tomasi-Gustafssev V. Uzhinsky¹³, Yu.N. Uzikov^{6,21,22,*}, Qian Wang²³, Qiang Zhao^{24,25}, A.V. Z 	⁶ , in ^{10,11} , on ²⁰ , Zelenov ⁷
1	The SPD setup and experimental conditions 1	7
2	Elastic pN , pd and dd scattering ² 2.1 Spin amplitudes of pN elastic scattering 2.2 Polarized pd elastic diffraction scattering within the Glauber model 2.3 Quasielastic pd-scattering $p + d \rightarrow \{pp\}({}^{1}S_{0}) + n$ 2.4 Elastic dd scattering 2.5 Double polarized large angle pN elastic scattering 2.6 Summary	8 9 11 12 13 14
3	Studying periphery of the nucleon in diffractive pp scattering ³	15
4	 Hadron structure and spin effects in elastic hadron scattering at NICA energies ⁴ 4.1 HEGS model and spin effects in the dip region of momentum transfer 4.2 Conclusions	18 19 23 25
	 5.1 Model of chromomagnetic polarization of quarks	27 31 33
6	Vector light and charmed meson production 66.1Charm production	37 37 39 41 46
7	 Exclusive hard processes with deuteron at NICA⁷ 7.1 Probing dynamics of nucleon - nucleon interaction in proton - deuteron quasielastic scattering	48 48 49
8	Scaling behaviour of exclusive reactions with lightest nuclei and spin observables 8	51

9	Multiquark correlations and exotic hadron state production 9	54
	9.1 Multiquark correlations and exotic state production at SPD NICA	54
	9.2 Multiquark correlations: fluctons in nuclei	54
	9.3 Few-quark correlations: Diquarks	55
	9.4 Multiparton scattering	56
	9.5 Multiquark exotic state production $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	57
	9.6 Summary	58
10	Study of inelastic d-d and p-d interactions for observation of neutron-	
10	proton system under strong compression 10	60
	10.1 Introduction	60
	10.2 Search for new dibaryons at the NICA SPD facility	61
11	Proposal for the study of lightest neutral hypernuclei	
	with strangeness -1 and -2^{-11}	65
	11.1 Binding conditions for 3 and 4-body systems with strangeness -1 and -2	66 60
	11.2 Production mechanism for $\Lambda\Lambda$ and advantages of double K + productions	68 71
	11.5 Summary	11
12	Problems of soft pp interactions ¹²	72
13	Puzzles of soft photons pp, pA and AA interactions 13	79
	13.1 The scientific program of SP study	80
	13.2 The preparation to experimental SP study	81
14	Hadron formation effects in heavy ion collisions 14	82
	14.1 The model	83
	14.2 Numerical results	85
	14.3 Summary and conclusions	85
15	Measurement of characteristics of the processes of pair production of	00
	polarized tau leptons in the SPD experiment.	89
16	On Measuring Antiproton-Production Cross Sections for Dark Matter	
	Search ¹⁶	94
	16.1 Antiproton Production Cross Sections	96
	16.2 NICA SPD Contribution	98
	16.3 Summary	99
1 -		
17	Tests of fundamental discrete symmetries at NICA facility: addendum to the spin physics programme 17	100
	17.1. Processing spin asymmetries in the total <i>nd</i> cross section	101
	17.2 PV asymmetry: expectations from Standard Model	101
	17.3 The experimental strategies	104
	17.4 Summary and outlook	107
		101

Physics goal	Required time	Experimental conditions		
First stage				
Spin effects in <i>p</i> - <i>p</i> scattering	0.3 year	$p_{L,T}-p_{L,T}, \sqrt{s} < 7.5 \text{ GeV}$	n	
dibaryon resonanses			3	
Spin effects in <i>p</i> - <i>d</i> scattering,	0.3 year	d_{tensor} - $p, \sqrt{s} < 7.5 \text{ GeV}$		
non-nucleonic structure of deuteron,			4	
\bar{p} yield				
Spin effects in <i>d</i> - <i>d</i> scattering	0.3 year	d_{tensor} - d_{tensor} , \sqrt{s} <7.5 GeV	1	
hypernuclei			I	
Hyperon polarization, SRC,	together with MPD	ions up to Ca	C	
multiquarks			Z	
	Second stage			
Gluon TMDs,	1 year	$p_T - p_T, \sqrt{s} = 27 \text{ GeV}$		
SSA for light hadrons				
TMD-factorization test, SSA,	1 year	p_T - p_T , 7 GeV< \sqrt{s} <27 GeV		
charm production near threshold,		(scan)		
onset of deconfinment, \bar{p} yield				
Gluon helicity,	1 year	$p_L - p_L, \sqrt{s} = 27 \text{ GeV}$		
Gluon transversity,	1 year	d_{tensor} - d_{tensor} , $\sqrt{s_{NN}} = 13.5 \text{ GeV}$		
non-nucleonic structure of deuteron,		or/and d_{tensor} - p_T , $\sqrt{s_{NN}} = 19 \text{ GeV}$		
"Tensor porlarized" PDFs				

Table 12.1: Tentative running plan for the Spin Physics Detector.

PID system of SPD (possible options)

Data Acquisition System (DAQ)

- Bunch crossing every 76 ns → crossing rate 12.5 MHz
- At maximum luminosity of 10³² cm⁻²s⁻¹ the interaction rate is 3MHz
- No hardware trigger to avoid possible biases
- Raw data stream 20 GB/s or 200 PB/year
- Online filter to reduce data by oder of magnitude ~10 PB/year

	CPU [cores]	Disk [PB]	Tape [PB]
Online filter	6000	2	none
Offline computing	30000	5	9 per year