Версия: 23 декабря 2019 г.

Технические заметки о малоугольном *pp*-рассеянии и его наблюдении в эксперименте NICA-SPD

А.И. Львов (ФИАН)

Содержание

I. Пучки коллайдера NICA	2
II. Размер банчей	6
III. Светимость в лобовых столкновениях банчей	9
IV. Число <i>pp</i> -столкновений: предварительные оценки	12
V. Идеализированная кинематика <i>pp</i> -рассеяния	12
VI. Симуляция событий	17
А. Начальные частицы	17
В. Конечные частицы	19
С. Квадрат переданного импульса и его ошибки	20
1. Вклад ошибок детектора	21
2. Вклад флуктуаций углов падения	21
3. Вклад флуктуаций поперечных отклонений	22
4. Вклад флуктуаций продольного импульса	22
5. Итог	22
D. Розыгрыш сечения и конечных частиц	23
VII. Численное моделирование и первые результаты	24
VIII. Заключительные замечания	27
Благодарности	27
Список литературы	28

I. ПУЧКИ КОЛЛАЙДЕРА NICA

Организация столкновений поляризованных протонов и дейтронов и стартовый запуск детектора SPD будут достигнуты лишь на заключительном этапе развития проекта NICA («Полная конфигурация», 2025 год); на более раннем этапе («Базовая конфигурация», 2022 год) будут организованы столкновения ионов (Heavy Ion Collision Mode) и запущен детектор MPD (см. [1], с. 25-26 и 90). Из-за оптимизации к разным задачам объявляемые параметры пучков немного плавают со временем (см., например, [2–5]). Мы будем полагаться на последнюю обновляемую информацию с сайта NICA [6], особенно на его технический раздел [7] и на размещенные там документы, в частности на текущую версию «Технического проекта» [1]. Дополнительные архивные материалы присутствуют на сайте nucloweb [8–10].

Коллайдер представляет собой два накопительных кольца, расположенных одно над другим на расстоянии 32 см (см. конфигурацию апертур магнитов на рис. 1) с двумя точками столкновения пучков (IP – interaction point). Столкновения пучков производятся под нулевым углом. Некоторые параметры пучков собраны в Таблице I.

Рис. 1: Сверхпроводящий двухапертурный дипольный магнит коллайдера (без кожуха) с рабочим магнитным полем до 1.8 Т [8]. Направления вертикального магнитного поля в апертурах противоположны.

Нуклотрон как инжектор коллайдера будет использоваться для ускорения поляризованных протонов и дейтронов. Максимальное поле дипольных магнитов Нуклотрона в режиме его стабильной долговременной работы составляет 1.8 Т, что соответствует максимальной кинетической энергии протонов 10.7 GeV и энергии 5.3 GeV/u для дейтронов и легких ионов с Z/A = 1/2 ([1], с. 22). Число частиц в банчах в режиме, оптимизированном для столкновений тяжелых ионов, составит несколько единиц на 10^{10} , а на этапе исследования *pp*-столкновений достигнет 10^{12} . Для обеспечения максимально возможной энергии в коллайдере (соответствующей его максимальной магнитной жёсткости) предусмотрено медленное доускорение частиц пучка, выведенных из Нуклотрона и накопленных на энергии вывода ([1], с. 23).

Таблица I: Проектные параметры в	коллайдера	NICA в р	ежиме	Heavy 1	lon	Collisions
([1], с. 22–24) и ([10], том 3, с. 65).						

длина равновесной орбиты кольца коллайдера, $C_{\mathrm{ring}} = 2 C_{\mathrm{Nucloton}}$	503.04 m
макс. поле дипольных магнитов Нуклотрона и коллайдера, B	1.8 T
макс. магнитная жёсткость Нуклотрона, $B ho$	$38.5~\mathrm{T}\cdot\mathrm{m}$
макс. магнитная жёсткость коллайдера, $B ho$	44.5 $\mathrm{T}\cdot\mathrm{m}$
энергия в pp -столкновениях без доускорения, $\sqrt{s_{pp}}$	$12 \div 21 \text{ GeV}$
энергия в dd -столкновениях без доускорения, $\sqrt{s_{NN}}$	$4 \div 11 \text{ GeV}$
макс. энергия в <i>pp</i> -столкновениях (с доускорением) $\sqrt{s_{pp}}$ [3]	$27 {\rm GeV}$
скорость частиц, v	$pprox 3\cdot 10^8 { m m/s}$
число банчей в кольце каждого направления, n_b	22
RMS «длина банча», σ_s	60 cm
время оборота банча протонов, $ au = C_{\mathrm{ring}}/v$	$1.68 \cdot 10^{-6} \text{ s}$
частота оборотов одного банча, $f=1/ au$	$0.59 \mathrm{~MHz}$
временной интервал между приходами банчей в IP, $\Delta au = au/n_b$	76 ns
частота прихода банчей в IP, $f_c=1/\Delta au=n_b f$	13 MHz
пространственный интервал между приходами банчей в IP, $\Delta l = v \Delta \tau$	23 m
эмиттанс пучка в IP, $\epsilon_{x \mathrm{area}} = \pi \epsilon_x$ (горизонтальный)	$1.1 \pi \cdot \mathrm{mm} \cdot \mathrm{mrad}$
$\epsilon_{y\mathrm{area}}=\pi\epsilon_{y}~(\mathrm{вертикальный})$	$0.8 \pi \cdot \mathrm{mm} \cdot \mathrm{mrad}$
аксептанс (admittance) кольца коллайдера, $\epsilon_{\rm area\ max}$	$40 \pi \cdot \mathrm{mm} \cdot \mathrm{mrad}$
минимум бета-функции в IP (Interaction Point), $\beta^* = \beta_x^* = \beta_y^*$	60 cm
то же в режиме pp -столкновений: β^* [3]	$35~\mathrm{cm}$
частоты бетатронных колебаний (tune), $Q_x = Q_y$	9.44
критическая (transition) энергия, $\gamma_{\rm tr}$ (гамма-фактор)	7.088
относительный разброс по импульсу, $\delta_p = \mathrm{RMS} \ \Delta p / p$	$1.65 \cdot 10^{-3}$
число ядер золота Au^{+79} в одном банче, $N_1=N_2$	$2.3\cdot 10^9$
число протонов в одном банче, $N_1 = N_2$	неск. единиц $\times 10^{10}$
то же на этапе «Полная конфигурация»	$\sim 10^{12}$
светимость AA -столкновений в Heavy Ion Collision Mode, L	${\sim}10^{27}~{\rm cm}^{-2}{\rm s}^{-1}$
светимость pp -столкновений в Heavy Ion Collision Mode, L	$\sim 10^{30} \ {\rm cm}^{-2} {\rm s}^{-1}$
светимость pp -столкновений в Multi-Bunch Storage Mode, L	${\sim}10^{32}~{\rm cm}^{-2}{\rm s}^{-1}$
вакуум в кольце	10^{-11} Torr
расстояние между торцами трекера TR Endcap (возможными местами	
расположения протонных детекторов), $2D$ ([5], c. 22)	$5.64 \mathrm{~m}$
то же между торцами ЭМ калориметра Ecal Endcap, $2D$	6.40 m

Схема колец и фокусирующих структур коллайдера показана на рис. 2 и 3.

Рис. 2: Схема кольца коллайдера с магнитным и RF оборудованием и вставками стохастического (по одному на кольцо) и электронного охлаждения ([2], с. 43). В квадратных скобках указаны длины элементов в метрах, в круглых – размер для их размещения.

Рис. 3: Периодические 12-метровые ячейки FODO колец коллайдера [11]. Здесь QF и QD — фокусирующие и дефокусирующие квадруполи, Dip — дипольные магниты, PU — pick-up станция стохастического охлаждения, Corr — корректирующий пакет.

На рис. 4 показан общий вид детектора MPD и конфигурации пучков (сходная конфигурация пучков ожидается и для детектора SPD), включая элементы фокусировки и сведения/разведения встречных пучков. Детализация расположения и размеров этих элементов приведена на рис. 5. На участке длиной ~10 m банчи частиц дипольными магнитами вертикального сведения/разведения перенаправляются в вакуумную трубу детектора и затем фокусируются на его центр. Внутри трубы банчи свободно двигаются навстречу друг другу под нулевым углом. Высокий вакуум в кольце (10⁻¹¹ Torr) обеспечивает необходимую малость рассеяния банчей на остаточном газе и достаточное время жизни пучка.

Рис. 4: Общий вид детектора MPD и схемы столкновения пучков ([13], с. 59).

Рис. 5: Квадрупольные линзы финальной фокусировки и дипольные магниты вертикального сведения/разведения пучков около торца детектора MPD [14]. Зеленая зона — ZDC (Zero Degree Calorimeter).

II. РАЗМЕР БАНЧЕЙ

(этот и следующий раздел написаны для контроля понимания декларируемых параметров пучков (в соответствии с [12]) и уточнения обозначений)

Для отдельной частицы, пробегающей путь *s* вдоль равновесной орбиты и совершающей (быстрые малые) бетатронные колебания в локальной поперечной плоскости отклонений *xy*, сохраняется инвариант Куранта–Снайдера — поперечный эмиттанс ϵ_0 одной частицы (single-particle emittance), имеющий для *x*-направления вид

$$\epsilon_0 = \gamma(s)x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'^2(s) \tag{1}$$

(и аналогично для y). Здесь $\alpha(s), \beta(s), \gamma(s)$ – зависящие от s (и от направления x, y) параметры Твисса,

$$\alpha(s) = -\frac{1}{2}\beta'(s), \qquad \gamma(s) = \frac{1 + \alpha^2(s)}{\beta(s)}$$
(2)

(штрих означает производную по s). При этом

$$x(s) = \sqrt{\epsilon_0 \beta(s)} \cos(\phi(s) + \phi_0), \quad \phi'(s) = 1/\beta(s), \quad \epsilon_0 = \text{const}, \quad \phi_0 = \text{const}, \quad (3)$$

так что максимальное поперечное отклонение данной частицы от равновесной орбиты составляет $|x(s)|_{\max} = \sqrt{\epsilon_0 \beta(s)}$, а максимальное угловое отклонение $|x'(s)|_{\max} = \sqrt{\epsilon_0 \gamma(s)}$.

В случае банча многих частиц, запущенных по орбите со случайными single-particle эмиттансами ϵ_0 и случайными начальными фазами ϕ_0 , плотность частиц в поперечном фазовом пространстве (x, x') (без учёта дисперсионного уширения пространственного размера, т. е. без учёта разброса импульсов частиц в пучке $\Delta p/p$) следует гауссовому распределению

$$\rho(x,x') = \frac{1}{2\pi\epsilon} \exp\left(-\frac{\gamma x^2 + 2\alpha x x' + \beta x'^2}{2\epsilon}\right), \qquad \int \rho(x,x') \, dx \, dx' = 1. \tag{4}$$

Здесь константа ϵ равна среднему по частицам пучка

$$\epsilon = \frac{1}{2} \langle \epsilon_0 \rangle \tag{5}$$

и часто называется эмиттансом пучка [15, 16]. Вместе с тем солидное руководство [17] называет эмиттансом пучка фазовый объем (площадь), который отличается от величины (5) дополнительным множителем π . Именно второе определение используется в публикациях ОИЯИ (включая Таблицу I) и следует ГОСТ Р 52103-2003 для терминов и обозначений в области ускорителей заряженных частиц (авторы стандарта – НИИЭФА им. Д.В. Ефремова). Согласно этому ГОСТу эмиттансом называется площадь эллипса

$$\epsilon_{\rm area} = \pi \epsilon, \tag{6}$$

охватывающего поперечный фазовый объем пучка (в размере одного стандартного отклонения). Однако одновременно ГОСТ требует указывать численное значение эмиттанса ϵ_{area} с явным выделением фактора π (как в Таблице I), тем самым явно предъявляя и остаточный фактор — величину ϵ , стоящую в уравнении (6) и называемую в [12] (уравнение (2)) ненормализованным (геометрическим) среднеквадратичным эмиттансом. $^{\rm 1}$

На участке орбиты без отклоняющего и фокусирующего/дефокусирующего поперечного магнитного поля (на оси MPD или SPD детектора) бета-функция подчиняется уравнению

$$\frac{1}{2}\beta(s)\beta''(s) - \frac{1}{4}\beta'^2(s) = 1,$$
(7)

которое (после дифференцирования) влечет $\beta'''(s) = 0$ и имеет точное решение в виде квадратичного полинома,

$$\beta(s) = \beta^* + \frac{s^2}{\beta^*}, \qquad \beta^* = \text{const},$$
(8)

с минимумом β^* в точке s = 0, где должен располагаться центр MPD/SPD детектора. В точке минимума поперечное сечение пучка минимально. При этом

$$\alpha(s) = -\frac{s}{\beta^*}, \quad \gamma(s) = \frac{1}{\beta^*} = \text{const.}$$
(9)

В терминах введенных параметров среднее пространственное и угловое отклонение частиц пучка от равновесной орбиты даётся уравнениями

$$\sigma_x^2 \equiv \langle x^2 \rangle = \epsilon \beta(s), \qquad \sigma_{x'}^2 \equiv \langle x'^2 \rangle = \epsilon \gamma(s), \qquad \langle xx' \rangle = -\epsilon \alpha(s).$$
 (10)

Соответствующее поперечное пространственное распределение частиц в банче записывается как

$$Nn_{x}(x) = \frac{N}{\sqrt{2\pi}\sigma_{x}} \exp\left(-\frac{x^{2}}{2\sigma_{x}^{2}}\right), \quad \int n_{x}(x) \, dx = 1, \quad \int x^{2}n_{x}(x) \, dx = \sigma_{x}^{2}, \tag{11}$$

где *N* — число частиц в банче.

В той же гауссовой форме записываются распределения для направления y и (приближённо) для z. Мы подразумеваем, что x это горизонтальное направление, y – вертикальное, а направление z – вдоль оси пучка. Возможными корреляциями между распределениями по вертикали и горизонтали пренебрегаем; такие корреляции подавляются системой коррекции магнитного поля коллайдкра ([10], том 3, раздел 7.1.3).

При проектных параметрах *pp*-столкновений, указанных в Таблице I ($\beta^* \equiv \beta_x^* = \beta_y^* = 35 \text{ cm}, \epsilon_x = 1.1 \text{ mm} \cdot \text{mrad}, \epsilon_y = 0.8 \text{ mm} \cdot \text{mrad}$), поперечный размер пучков в центре детектора равен

$$\sigma_x^* = \sqrt{\epsilon_x \beta^*} = 0.62 \text{ mm}, \qquad \sigma_y^* = \sqrt{\epsilon_y \beta^*} = 0.53 \text{ mm}, \tag{12}$$

¹ Цитата из авторитетной монографии [15], с. 158: «The literature is not always uniform in the representation of numerical values for the beam emittance. Often the beam emittance is quoted in units of π -mm-mrad and it is not clear if the factor π is included in the numerical value or not. We define in this book the beam emittance as the beam phase space area divided by π .»

а при уходе от центра растет как

$$\sigma_{x,y}(s) = \sigma_{x,y}^* \sqrt{\beta(s)/\beta^*} = \sigma_{x,y}^* \sqrt{1 + s^2/\beta^{*2}}$$
(13)

(«эффект песочных часов»). Соответственно RMS диаметр пучка в центре равен $2\sqrt{\sigma_x^{*2} + \sigma_y^{*2}} = 1.6$ mm, а угловой разброс частиц на всей оси зоны столкновения, где магнитное поле подавлено, чтобы не влиять на спины поляризованных частиц пучков, будет постоянным:

$$\sigma_{x'} = \sqrt{\frac{\epsilon_x}{\beta^*}} = 1.77 \text{ mrad}, \qquad \sigma_{y'} = \sqrt{\frac{\epsilon_y}{\beta^*}} = 1.51 \text{ mrad}.$$
 (14)

Отметим, что аксептанс (admittance) кольца коллайдера, т. е. максимальный эмиттанс ϵ_{area} , пропускаемый кольцом, будет не меньше $40 \pi \cdot \text{mm} \cdot \text{mrad}$.

Для продольного направления размер и точная форма банчей диктуется размером корзины (bucket), формируемой RF системами Нуклотрона и коллайдера, а также системами электронного и стохастического охлаждения. Для оценок она часто (и приближённо!!) принимается гауссовой,

$$n_z(s) \approx \frac{1}{\sqrt{2\pi}\,\sigma_s} \,\exp\left(-\frac{s^2}{2\sigma_s^2}\right), \qquad \int n_z(s)\,ds = 1,\tag{15}$$

с параметром σ_s , называемым в [12] (в уравнении (2)) среднеквадратичной длиной сгустка. Ее величина $\sigma_s = 60$ ст выбрана в проекте из соображений ([12], с. 548) компромисса между противоположными требованиями — минимизации «эффекта песочных часов» на светимость (см. ниже в (24)) и обеспечением устойчивости пучка.

Структура банчей в кольцах коллайдера NICA схематично показана на рис. 6. В каждом из двух встречных направлений двигаются по 22 заполненных банча, где максимальное число 22 выбрано из соображений избежания паразитных столкновений на участке сведения/разведения пучков и в окрестности точки встречи ([12], с. 547).

Рис. 6: Структура банчей в кольце коллайдера [2].

Проектные величины бета- и дисперсионных функций коллайдера приведены в TDRдокументации ([10], том 3, с. 66) и воспроизведены ниже на рис. 7.

Рис. 7: Бета- и дисперсионные функции коллайдера ([10], том 3, с. 66). Точкам столкновения и минимумам $\beta(s)$ (центрам двух детекторов) отвечают s = 0 (или $s = C_{\text{ring}} = 503.04$ m) и $s = \frac{1}{2}C_{\text{ring}} = 251.52$ m.

III. СВЕТИМОСТЬ В ЛОБОВЫХ СТОЛКНОВЕНИЯХ БАНЧЕЙ

Мгновенная светимость в лобовых столкновениях двух банчей, имеющих соосные встречные скорости v_1 и v_2 , даётся интегралом от произведения плотностей частиц в банчах:

$$L_{12}(t) = (v_1 + v_2) \int N_1 n_1(\vec{r}, t) N_2 n_2(\vec{r}, t) d^3 \vec{r}.$$
 (16)

В случае столкновения банчей одинаковой формы и с некоррелированными поперечными распределениями эти плотности имеют вид

$$N_1 n_1(\vec{r}, t) = \frac{N_1}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_s} \exp\left[-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} - \frac{(z - vt)^2}{2\sigma_s^2}\right],$$

$$N_2 n_2(\vec{r}, t) = \frac{N_2}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_s} \exp\left[-\frac{(x - \Delta x)^2}{2\sigma_x^2} - \frac{(y - \Delta y)^2}{2\sigma_y^2} - \frac{(z + v(t - \Delta t))^2}{2\sigma_s^2}\right].$$
 (17)

Здесь для общности наряду с продольными смещениями банчей из-за их движения со скоростями $\pm v$ в противоположных направлениях вставлены малые поперечные разведения банчей на величины Δx , Δy . В центральной точке столкновений x = y = z = 0, куда банчи наводятся магнитными системами коллайдера, располагается центр

MPD/SPD детектора. В приведённой параметризации время t = 0 отвечает моменту, когда через центр детектора z = 0 пролетает центр банча-1, тогда как центр банча-2 оказывается там с запаздыванием Δt .

Считая для начала поперечные размеры перекрывающихся банчей $\sigma_{x,y}$ постоянными (независящими от z), что на самом деле оправдано только для очень коротких банчей с $\sigma_s^2 \ll \beta^{*2}$, и вычисляя элементарные гауссовые интегралы вида

$$\int \exp\left[-A(x^2 + (x - \Delta x)^2\right] dx = \sqrt{\frac{\pi}{2A}} \exp\left(-\frac{A}{2}\Delta x^2\right), \qquad A = \text{const}, \tag{18}$$

находим приближённую мгновенную светимость в банч-банч столкновении:

$$L_{12}(t) = \frac{vN_1N_2}{4\pi^{3/2}\sigma_x\sigma_y\sigma_s} \exp\left(-\frac{\Delta x^2}{4\sigma_x^2} - \frac{\Delta y^2}{4\sigma_y^2} - \frac{v^2(2t - \Delta t)^2}{4\sigma_s^2}\right).$$
 (19)

Из всего интервала времени между приходами очередной пары банчей $\Delta \tau = 1/f_c = 76$ ns она значительна только в течение короткого времени перекрытия банчей (масштаба $\sigma_s/v = 2$ ns). Максимальная мгновенная светимость, достигаемая при точном лобовом сведении банчей, равна

$$L_{12\max} = \frac{vN_1N_2}{4\pi^{3/2}\sigma_x\sigma_y\sigma_s},$$
(20)

а светимость, усреднённая по времени, равна

$$L = \langle L_{12}(t) \rangle_{\Delta\tau} = \frac{1}{\Delta\tau} \int L_{12}(t) dt = \frac{N_1 N_2 f_c}{4\pi\sigma_x \sigma_y} \exp\left(-\frac{\Delta x^2}{4\sigma_x^2} - \frac{\Delta y^2}{4\sigma_y^2}\right).$$
(21)

Этот ответ совпадает с тем, что приведён в [17] для случая нулевых Δx , Δy , который и будет подразумеваться ниже. Отметим только, что немного смещая пучки в поперечном направлении, из зависимости светимости и выхода продуктов столкновений от Δx , Δy можно измерить поперечные размеры пучка σ_x , σ_y и, дополнительно измеряя число частиц в банчах $N_{1,2}$, затем независимо вычислить светимость. Это суть метода поперечного сканирования, предложенного S. van der Meer еще в 1968 году и широко используемого в современных коллайдерных экспериментах, в т. ч. на LHC (см., например, подробные обзоры [18–20] с обсуждением ошибок и точностей данного метода).

Если учесть, что ширины банчей $\sigma_x(s)$, $\sigma_y(s)$ увеличиваются по мере удаления банчей от точки их фокусировки (от центра детектора), то подынтегральное выражение в интеграле по продольной координате в формуле для светимости теряет чисто гауссовую форму и приобретает резко меняющийся предэкспоненциальный множитель $1/(1 + s^2/\beta^{*2})$. Тогда распределение светимости по зоне столкновения двух протонных банчей следует зависимости

$$\frac{d^2 L_{12}(s,t)}{ds \, dt} \propto n_1 n_2 \propto \frac{\exp[-(s^2 + v^2 t^2)/\sigma_s^2]}{1 + s^2/\beta^{*2}},\tag{22}$$

а средняя по времени полная светимость в зоне детектора оказывается равной

$$L = \frac{N_1 N_2 f_c}{4\pi \sigma_x^* \sigma_y^*} f_{\rm HG},\tag{23}$$

где фактор

$$f_{\rm HG} = \int \frac{\exp(-s^2/\sigma_s^2)}{1 + s^2/\beta^{*2}} \frac{ds}{\sqrt{\pi} \sigma_s} < 1$$
 (24)

описывает (в гауссовом приближении (15)) ослабление светимости за счет расширения банчей (англ. hourglass effect — «эффект песочных часов»). Численно он равен $f_{\rm HG} = 0.758$ при $\sigma_s/\beta^* = 60$ cm/60 cm = 1 и равен $f_{\rm HG} = 0.595$ при $\sigma_s/\beta^* = 60$ cm/35 cm.

Распределение светимости (22) по зоне столкновений показано на рис. 8.

Рис. 8: Распределение светимости (22) в относительных единицах по зоне столкновений. Сплошная и пунктирная линии — соответственно с учётом и без учёта hourglass effect (при $\beta^* = 35$ cm).

Ответ (23) совпадает с уравнением (2) из базовой статьи [12], подтверждая правильность излагаемого понимания смысла декларируемого параметра $\sigma_s = 60$ сm. Этот параметр именуется в литературе «среднеквадратичной длиной сгустка» [12] или «RMS bunch length» [2], хотя распределению (15) соответствует средняя длина (от -s до +s), равная $2\sigma_s$:

$$\left[\int (2s)^2 n_z(s) \, ds\right]^{1/2} = 2\sigma_s. \tag{25}$$

Приведённые результаты означают, что растяжка (duty factor) светимости составляет

duty factor
$$= \frac{L}{L_{12\,\text{max}}} = \frac{\sqrt{\pi}\,\sigma_s\,n_b}{C_{\text{ring}}}f_{\text{HG}} = 2.8\%.$$
 (26)

При числе протонов в банчах $N_{1,2} = 10^{12}$, интервале между столкновениями банчей $\Delta \tau = 76$ ns, горизонтальном и вертикальном эмиттансе $\epsilon_x = 1.1 \cdot 10^{-4}$ cm, $\epsilon_y = 0.8 \cdot 10^{-4}$ cm, и минимальной бета-функции $\beta^* = 35$ cm в зоне столкновения светимость (23) равна

$$L = 1.9 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}, \tag{27}$$

что по масштабу соответствует числу, объявленному в Таблице I.

IV. ЧИСЛО *pp*-СТОЛКНОВЕНИЙ: ПРЕДВАРИТЕЛЬНЫЕ ОЦЕНКИ

При проектной средней светимости $L = 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ число *pp*-столкновений за одно банч-банч столкновение ($\Delta \tau = 76 \text{ ns}$) будет равно

$$N_{12} = \sigma_{\rm tot} L \,\Delta\tau = 0.31,\tag{28}$$

где сечение *pp*-взаимодействий (в том числе упругих), приводящих к выбивании протонов с орбиты, приближённо взято равным полному сечению 40 mb.

Полное число *pp*-столкновений в секунду составит

$$n_{12} = \sigma_{\text{tot}} L = 4 \cdot 10^6 \text{ s}^{-1} = 4 \text{ MHz.}$$
 (29)

Соответственно столкновительное время жизни банча из $N_1 \sim 10^{12}$ частиц, допускаемое данным темпом *pp*-столновений, будет $N_1/n_{12} \sim 2.5 \cdot 10^5$ s = 70 часов.

На самом деле время жизни пучка гораздо сильнее ограничивается другими эффектами. Один из важнейший из них это IBS — intrabeam scattering (кулоновское рассеяние друг на друге частиц банча, имеющих немного разные импульсы, ограниченное стохастическим охлаждением) [12], который даёт время роста эмиттанса ионного пучка Au^{+79} 1700 s ([1], c. 24). В условиях равновесия между процессами нагрева и охлаждения пучка время жизни светимости преимущественно определяется прямыми потерями частиц за счет однократного рассеяния на атомах остаточного газа на большие углы (а при использовании электронного охлаждения также за счет рекомбинации с охлаждающими электронами). За счет высокого вакуума в кольце время жизни за счет рассеяния на большие углы достигает нескольких часов, тогда как время накопления (заполнения) пучка в каждом кольце не превышает 3 минут ([12], с. 545).

Полный выход упругих *pp*-реакций в одном банч-банч столкновении составляет

$$N_{12\,\mathrm{el}} = \sigma_{\mathrm{el}} L \,\Delta \tau = 0.054,\tag{30}$$

где сечение упругого *pp*-рассеяния взято равным 7 mb. Полный выход упругих *pp*-рассеяний за секунду составит

$$n_{12\,\rm el} = \sigma_{\rm el} L = 0.7 \cdot 10^6$$
 событий в секунду = 0.7 MHz. (31)

V. ИДЕАЛИЗИРОВАННАЯ КИНЕМАТИКА *pp*-РАССЕЯНИЯ

Примерная конфигурация детектора SPD показана на рис. 9. Небольшие детекторы протонов, вылетающих под малыми углами, можно расположить в районе внутренних торцов электромагнитного калориметра на небольшом расстоянии от оси пучков при $z = \pm D = \pm 2.8$ m (см. схему на рис. 10). Будем пока предполагать, что рассеянные под малыми углами протоны летят в специальных вакуумных штанах и никакого дополнительного рассеяния на пути к *p*-детекторам не испытывают. Угловым и поперечным разбросом налетающих частиц, связанным с бетатронными колебаниями, пока пренебрегаем и учитываем только гораздо больший продольный разброс, связанный с длиной банчей.

Для каждого регистрируемого события детекторы рассеянных протонов p'_1, p'_2 определяют 4 параметра (помимо двух азимутов): поперечные координаты X_1, X_2 (они разных знаков!) пришедших частиц, а также моменты времени T_1, T_2 их прихода. При этом

Рис. 9: Примерная схема детектора SPD, в том числе с размерами ([5], с. 21-22). Электромагнитный калориметр (ECal Endcap) показан зеленым цветом, желтым цветом отмечен трекер заряженных частиц (TR Endcap). Пустоты вокруг трубы с пучком показаны не полностью.

Рис. 10: Примерная схема регистрации протонов в реакции $p_1p_2 \rightarrow p'_1p'_2$. Центр SPD детектора на оси пучка (z = 0) обозначен как C. Координата точки pp-столкновения в конкретном событии обозначена как Z. Расстояние по оси z между детекторами (внутренними торцами ЭМ калориметра либо трекера) равно 2D.

точное место Z и время T самого столкновения протонов из банчей заранее не известно из-за не слишком малой длины банчей.

Для определения Z, T и, главное, угла рассеяния θ (и соответствующего квадрата переданного импульса) конкретного столкновения по 4 измеряемым параметрам используем кинематические уравнения движения вдоль осей x и z:

$$X_{1} = (D - Z) \operatorname{tg} \theta,$$

$$-X_{2} = (D + Z) \operatorname{tg} \theta,$$

$$D - Z = (T_{1} - T) v \cos \theta,$$

$$D + Z = (T_{2} - T) v \cos \theta.$$
(32)

Первые два уравнения уже определяют место столкновения и угол рассеяния:

$$Z = -D \frac{X_1 + X_2}{X_1 - X_2}, \qquad \text{tg}\,\theta = \frac{X_1 - X_2}{2D}.$$
(33)

Вторая пара уравнений снова даёт место столкновения, а также его время:

$$Z = \frac{v\cos\theta}{2}(T_2 - T_1), \qquad T = \frac{T_1 + T_2}{2} - \frac{D}{v\cos\theta}.$$
 (34)

Переопределенность Z (а также совпадение азимутов импульсов \vec{p}'_1, \vec{p}'_2) позволяет надежно идентифицировать события упругого рассеяния. Дополнительно можно проверять, что в восстановленный момент времени T банчи действительно перекрывались в точке Z и что мгновенная светимость была значительной.

Вместо неколичественных рассуждений об азимутах указанные кинематические соотношения можно записывать отдельно для осей i = x и y и определять Z_i , T_i и угол рассеяния θ_i отдельно по x- и y-координатам мест попадания (X_1, Y_1) и (X_2, Y_2) .

Восстановленный угол рассеяния (θ) вместе с известным импульсом протонов (p) определяет квадрат переданного импульса в данном событии упругого pp-рассеяния:

$$-t = 2p^2(1 - \cos\theta). \tag{35}$$

Дадим грубую оценку требуемых точностей для исследования «pp-аномалии» — небольшой осцилляции дифференциального сечения упругого pp-рассеяния в области $-t \approx 0.4 \text{ GeV}^2$ [21], см. рис. 11. Этот эффект наблюдался на ускорителе У-70 [22] при импульсе протонов, налетающих на неподвижную водородную мишень, равном $p_L = 60 \text{ GeV}/c$, что соответствует энергии в сцм $\sqrt{s} = \sqrt{2m^2 + 2mE_L} = 10.7 \text{ GeV},$ m = 0.938 GeV. Показанный на рисунке пик при малых $|t| \sim 0.1 \text{ GeV}^2$, наблюдаемый также на коллайдере CERN LHC в эксперименте ТОТЕМ, вероятно объясняется столкновениями пионных облаков протонов и связанными с этим сингулярностями амплитуды рассеяния при $t = 4m_{\pi}^2$ [23]. Однако второй пик в области $|t| \sim 0.4 \text{ GeV}^2$, недоступной для эксперимента ТОТЕМ, пока не имеет объяснения, и уже само его независимое экспериментальное подтверждение в эксперименте NICA-SPD представляется интересной и важной задачей.

На рисунке 12 показана зависимость квадрата переданного импульса t от угла ppрассеяния θ в сцм при нескольких энергиях столкновений, а также соответствующие поперечные отклонения частиц $R = (D \pm Z) \operatorname{tg} \theta$, дошедших до детекторов. Видно, что для покрытия нужной кинематической области t с шагом ~0.02 GeV² желательно регистрировать события при углах рассеяния $\theta = 2^{\circ} \div 10^{\circ}$ с шагом ~0.1° ≈ 2 mrad, который сопоставим с угловым разбросом частиц в банчах. Это требует измерения поперечных координат вылетевших протонов на удалении D = 2.8 m от центра столкновений с точностью $\lesssim 5$ mm. Измерение времён T_1 и T_2 также полезно для более точного нахождения Z и последующего восстановления угла рассеяния θ и квадрата переданного импульса t.

Используя для сечения упругого *pp*-рассеяния экспоненциальную аппроксимацию [22]

$$\frac{d\sigma}{dt} = A \exp(Bt), \quad A \approx 70 \text{ mb GeV}^{-2}, \quad B \approx 10 \text{ GeV}^{-2}, \tag{36}$$

находим, что сечение, проинтегрированное по области $|t| > t_{\min} = 0.2 \text{ GeV}^2$, равно

$$\sigma_{>} = \sigma(|t| > t_{\min}) = \frac{A}{B} \exp(-Bt_{\min}) = 0.95 \text{ mb.}$$
 (37)

При светимости $L = 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ выход *pp*-пар с $|t| > t_{\min}$ составит

$$L\sigma_{>} = 95000 \text{ s}^{-1}.$$
 (38)

Для сравнения отметим, что результаты эксперимента в Протвино [22] основаны на статистике $\sim 10^5$ событий упругого *pp*-рассеяния.

Ожидаемый высокий выход рассеянных протонов в эксперименте SPD позволяет рассчитывать не только на прецизионное исследование «pp-аномалии», но и на их использование для on-line мониторирования светимости L.

Рис. 11: Рисунок из статьи [21]. На левой панели нижняя кривая относится к импульсу протонов 65 GeV/c, а не к ошибочно указанной величине 60 GeV/c.

Рис. 12: Связь квадрата переданного импульса t с сцм-углом вылета протонов θ и их радиальным отклонением $R = (D - Z) \operatorname{tg} \theta$ при нескольких значениях $\sqrt{s_{pp}}$ и точки вылета Z = 0, $+\sigma_s$, $-\sigma_s$.

VI. СИМУЛЯЦИЯ СОБЫТИЙ

А. Начальные частицы

Для более аккуратных оценок выходов и требуемых точностей измерений проведем моделирование по Монте Карло характеристик процесса $p_1p_2 \rightarrow p'_1p'_2$ с учётом малых поперечных отклонений частиц банчей от равновесной орбиты, см. рис. 13.

Рис. 13: Столкновение в точке (X, Z) протонов p_1p_2 , летящих в пучке под углами $\theta_{1x} = x'_1$, $\theta_{2x} = x'_2$ в проекции на плоскость xz.

Исходным пунктом моделирования является общее выражение для выхода конечных частиц от однократного столкновения двух банчей с участием множества начальных частиц, летящих во множество точек столкновения \vec{r} под малыми углами $\vec{\theta_1}, \vec{\theta_2}$ навстречу друг другу со скоростями v_1, v_2 :

$$\Delta Y_{12} = (v_1 + v_2) N_1 N_2 \int \rho_1(\vec{r}, \vec{\theta}_1, t) \,\rho_2(\vec{r}, \vec{\theta}_2, t) \,\Delta\sigma \,dt \,d^3\vec{r} \,d^2\vec{\theta}_1 \,d^2\vec{\theta}_2. \tag{39}$$

Здесь $N_i \rho_i$ — плотности частиц банчей i = 1, 2 в «фазовом» пространстве $(\vec{r}, \vec{\theta})$ (см. примеры в (4) и (17)), нормированные как

$$\int \rho_i(\vec{r}, \vec{\theta}, t) \, d^3 \vec{r} \, d^2 \vec{\theta} = 1; \tag{40}$$

 $\Delta \sigma$ — сечение рождения конечных частиц в выбранное конечное состояние.

Интегрирование в (39) удобно делать приближённо — методом Монте-Карло. Его суть состоит в замене интеграла по «фазовому объему» $\Omega = \int g(x) dx$ — по многомерной области кинематических переменных x — на интегральную сумму по большому числу N случайно выбранных точек x_i , покрывающих объем Ω с вероятностью, пропорциональной g(x):

$$\int f(x)g(x) \, dx \approx \frac{\Omega}{N} \sum_{i=1}^{N} f(x_i). \tag{41}$$

Соответственно, мы случайно выбираем (разыгрываем) переменные интегрирования — время, координаты и углы $(t, \vec{r}, \vec{\theta_i})$ — пропорционально плотности $\rho_1 \rho_2$, а затем усредняем по этим переменным величину $\Delta \sigma$, если она зависит от них:

$$\Delta Y_{12} = N_1 N_2 \left\langle F \Delta \sigma \right\rangle,\tag{42}$$

где

$$F = (v_1 + v_2) \int \rho_1(\vec{r}, \vec{\theta}_1, t) \, \rho_2(\vec{r}, \vec{\theta}_2, t) \, dt \, d^3 \vec{r} \, d^2 \vec{\theta}_1 \, d^2 \vec{\theta}_2.$$
(43)

Будем предполагать, что распределения ρ_i по переменным *x*- и *y*-направлений не коррелированы и поэтому разбиваются на множители, зависящие соответственно только от (x_i, x'_i) и (y_i, y'_i) . Такую же факторизацию будем предполагать и для направления z, допуская только зависимость от z ширины банчей:

$$\rho_i = (\rho_i)_x (\rho_i)_y (\rho_i)_z. \tag{44}$$

1) Начнем с продольного движения и розыгрыша продольной координаты и момента столкновения протонов (Z, T). В гауссовом приближении продольная часть распределения $\rho_1\rho_2$ (ср. ур-е (17)) равна

$$(v_1 + v_2)(\rho_1)_z(\rho_2)_z = \frac{2v}{2\pi\sigma_s^2} \exp\left(-\frac{(z - vt)^2}{2\sigma_s^2} - \frac{(z + vt)^2}{2\sigma_s^2}\right) = \frac{v}{\pi\sigma_s^2} \exp\left(-\frac{z^2 + v^2t^2}{\sigma_s^2}\right), \quad (45)$$

интеграл которой по dt dz равен 1:

$$F_z = (v_1 + v_2) \int (\rho_1)_z (\rho_2)_z \, dt \, dz = 1.$$
(46)

Поэтому место и момент pp-столкновения (Z, T) разыгрываются как

$$Z = \frac{\sigma_s}{\sqrt{2}} G_1, \qquad T = \frac{\sigma_s}{v\sqrt{2}} G_2, \tag{47}$$

где переменные G_i здесь и далее обозначают некоррелированные гауссовые случайные величины с единичной дисперсией, распределенные как $\rho(G) dG = \exp(-G^2/2) dG/\sqrt{2\pi}$.

2) Для розыгрыша поперечных отклонений и углов налетающих протонов исходим из плотности распределения частиц в поперечном фазовом пространстве вида (4):

$$(\rho)_x = \frac{1}{2\pi\epsilon_x} \exp\left(-\frac{\gamma x^2 + 2\alpha x x' + \beta x'^2}{2\epsilon_x}\right)$$
(48)

(и аналогично для направления y), где

$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \beta \left(x' + \frac{\alpha x}{\beta} \right)^2 + \frac{x^2}{\beta}, \qquad \gamma = \frac{1 + \alpha^2}{\beta}.$$
(49)

Тогда поперечная часть произведения плотностей двух банчей имеет вид

$$(\rho_1)_x(\rho_2)_x = \frac{1}{4\pi^2 \epsilon_x^2} \exp\left[-\frac{\beta}{2\epsilon_x} \left(x_1' + \frac{\alpha x}{\beta}\right)^2 - \frac{\beta}{2\epsilon_x} \left(x_2' - \frac{\alpha x}{\beta}\right)^2 - \frac{x^2}{\epsilon_x\beta}\right]$$
(50)

(и аналогично для направления y). Здесь изменение знака перед членом с $\alpha(s) = -\frac{1}{2}\beta'(s)$ для протона-2 связано с его движением в противоположную сторону, так что пройденный им от центра C путь $s_2 = -s$ до места столкновения отличается знаком от пути $s_1 = s$, пройденного протоном-1. В соответствии с (50) поперечные координаты места столкновения разыгрываются как

$$X = \sqrt{\frac{\epsilon_x \beta}{2}} G_3, \qquad Y = \sqrt{\frac{\epsilon_y \beta}{2}} G_4, \tag{51}$$

а углы прихода протонов в точку столкновения как

$$\theta_{1x} = x_1' = -\frac{\alpha X}{\beta} + \sqrt{\frac{\epsilon_x}{\beta}} G_5, \qquad \theta_{2x} = x_2' = \frac{\alpha X}{\beta} + \sqrt{\frac{\epsilon_x}{\beta}} G_7,$$

$$\theta_{1y} = y_1' = -\frac{\alpha Y}{\beta} + \sqrt{\frac{\epsilon_y}{\beta}} G_6, \qquad \theta_{2y} = y_2' = \frac{\alpha Y}{\beta} + \sqrt{\frac{\epsilon_y}{\beta}} G_8.$$
(52)

Во всех этих формулах величины $\beta(s) = \beta^* + s^2/\beta^*$ и $\alpha(s) = -s/\beta^*$ надо брать в точке s = Z, разыгранной ранее, что учитывает локальное изменение ширины банчей по мере их ухода из центра детектора (подобно форме песочных часов, англ. hourglass).

При вычислении выхода ΔY_{12} интеграл от поперечной части $\rho_1 \rho_2$ даёт фактор

$$F_x = \int (\rho_1)_x (\rho_2)_x \, dx \, dx'_1 \, dx'_2 = \frac{1}{\sqrt{4\pi\epsilon_x\beta}} = \frac{1}{\sqrt{4\pi\sigma_x}}$$
(53)

и аналогичный фактор для направления y. Вместе эти F-факторы дают зависящий от s = Z множитель

$$F = F_x F_y F_z = \frac{1}{4\pi\sigma_x \sigma_y},\tag{54}$$

который должен быть вставлен перед сечением *pp*-взаимодействия $\Delta \sigma$ при его усреднении по случайно разыгранным конфигурациям:

$$\Delta Y_{12} = \left\langle \frac{N_1 N_2}{4\pi \sigma_x \sigma_y} \Delta \sigma \right\rangle. \tag{55}$$

Эта формула включает результат для светимости (23), в т.ч. с учётом «эффекта песочных часов».

В. Конечные частицы

Рассмотрим теперь розыгрыш конечных частиц реакции упругого *pp*-рассеяния $p_1 + p_2 \rightarrow p'_1 + p'_2$ с учётом (только в первом порядке!) малых поперечных (~1 mm) и угловых (~1 mrad) отклонений начальных частиц от оси пучка. Отметим, что именно малые угловые отклонения в основном (помимо небольшого разброса импульсов частиц в банчах) определяют небольшое отличие лабораторной системы (системы покоя коллайдера) от сцм сталкивающихся протонов.

Для фиксации конечного состояния выберем на торце электромагнитного калориметра (или на торце трекера) точку с координатами $\vec{R}_1 = (X_1, Y_1, D)$ и потребуем попадания в нее протона p'_1 , вылетевшего из уже разыгранной точки столкновения $\vec{r} = (X, Y, Z)$ вблизи оси банчей. Указанные условия определяют направление импульса протона p'_1 :

$$\vec{p}_1' = q\vec{n}, \qquad \vec{n}^2 = 1, \qquad \vec{n} \parallel (\vec{R}_1 - \vec{r}),$$
(56)

где q — пока неизвестная величина модуля 3-импульса протона p'_1 , а \vec{n} — единичный вектор в направлении $\vec{R}_1 - \vec{r}$, угол которого с осью пучка z не считается очень малым (порядка θ_i). Величину q можно определить из 4-мерного закона сохранения (используем далее единицы, в которых скорость света $c \equiv 30$ cm/ns = 1):

$$(P - p_1')^2 = p_2'^2 = m^2$$
, где $P \equiv p_1 + p_2 = p_1' + p_2'$, (57)

ИЛИ

$$Pp'_{1} = \frac{1}{2}P^{2} \implies P_{0}\sqrt{m^{2}+q^{2}} = q(\vec{P}\vec{n}) + \frac{1}{2}P^{2},$$
 (58)

откуда имеем квадратное уравнение для q:

$$q^{2}[P_{0}^{2} - (\vec{P}\vec{n})^{2}] - qP^{2}(\vec{P}\vec{n}) + [P_{0}^{2}m^{2} - \frac{1}{4}(P^{2})^{2}] = 0.$$
(59)

Ограничиваясь членами до первого порядка малости по углам падения θ_i начальных протонов, имеющих импульс p, записываем энергии и импульсы

$$p_{10} = p_{20} = E_p = \sqrt{m^2 + p^2},$$

$$\vec{p}_1 = p\vec{e}_z + p\vec{\theta}_1, \qquad \vec{p}_2 = -p\vec{e}_z + p\vec{\theta}_2,$$

$$P_0 = 2E_p, \qquad \vec{P} = p(\vec{\theta}_1 + \vec{\theta}_2),$$
(60)

где \vec{e}_z — единичный вектор вдоль оси пучка z, а вектор \vec{P} имеет только поперечные компоненты. Тогда уравнение для q даёт

$$q^2 - q(\vec{P}\vec{n}_{\perp}) - p^2 = 0, \tag{61}$$

откуда (в первом порядке по θ_i)

$$q = p + \frac{1}{2}(\vec{P}\vec{n}_{\perp}), \qquad \vec{p}_{1}' = q\vec{n}, \qquad p_{10}' = E_{p} + \frac{v}{2}(\vec{P}\vec{n}_{\perp}),$$
(62)

где скорость $v = p/E_p$.

Теперь импульс второго протона p_2' восстанавливается как

$$\vec{p}_2' = \vec{P} - \vec{p}_1' \tag{63}$$

вместе с его направлением и точкой $\vec{R}_2 = (X_2, Y_2, -D)$ попадания в детектор:

$$(\vec{R}_2 - \vec{r}) \parallel \vec{p}'_2, \implies \vec{R}_{2\perp} = \vec{r}_\perp - \frac{\vec{p}'_{2\perp}}{p'_{2z}}(D+Z).$$
 (64)

С. Квадрат переданного импульса и его ошибки

Теперь можно записать квадрат переданного импульса, включая поправки первого порядка по \vec{r}_\perp и $\theta_i:$

$$t = (p_1' - p_1)^2 = -(q\vec{n} - \vec{p_1})^2 = -2p^2(1 - n_z) + \Delta t[\theta],$$

$$\Delta t[\theta] = p^2 \vec{n_\perp} \Big[(\vec{\theta_1} - \vec{\theta_2}) + (\vec{\theta_1} + \vec{\theta_2})n_z \Big],$$
(65)

где $n_z = \vec{n} \vec{e_z}$, и по очереди исследовать роль флуктуаций различных параметроы частиц в пучках и ошибок детекторов.

1. Вклад ошибок детектора

Основной вклад в t даёт кусок

$$t \approx -2p^2(1 - n_z) = -2p^2 \frac{n_\perp^2}{1 + n_z} \approx -p^2 n_\perp^2,$$
(66)

близко соответствующий идеализированной кинематике *pp*-рассеяния, в которой *t* определяется точками попадания протонов в детектор и продольной координатой испускания *Z*:

$$t = -2p^2(1 - \cos\theta) \approx -p^2\theta^2, \qquad \theta \approx \operatorname{tg} \theta = \frac{R_{1\perp}}{D - Z} = \frac{-R_{2\perp}}{D + Z} = \frac{R_{1\perp} - R_{2\perp}}{2D}.$$
 (67)

Неточности δZ в определении Z при фиксированном значении $R_{1\perp}$ приведут к соответствующей неточности восстановления t:

$$\delta t[s] = \frac{2t\,\delta Z}{D-Z}.\tag{68}$$

В зависимости от метода нахождения Z — через поперечные координаты (с их погрешностями δR) или через времена прихода протонов (со своими погрешностями δT),

$$Z = -D \frac{R_{1\perp} - R_{2\perp}}{R_{1\perp} + R_{2\perp}} \qquad \text{или} \qquad Z = \frac{v \cos \theta}{2} (T_2 - T_1), \tag{69}$$

имеем соответственно

или

$$\delta Z = \frac{p \, \delta R}{\sqrt{-2t}} = 2.2 \text{ cm} \quad \text{M} \quad \delta t[s] = \frac{p \, \delta R}{D} \sqrt{-2t} = 0.0064 \text{ GeV}^2,$$
$$\delta Z \approx \frac{v \, \delta T}{\sqrt{2}} = 1.1 \text{ cm} \quad \text{M} \quad \delta t[s] = \frac{(-vt)\sqrt{2}}{D} \delta T = 0.0030 \text{ GeV}^2, \tag{70}$$

где численные значения даны для случая $\delta R=2$ mm, $\delta T=50$ ps, $p=10~{\rm GeV}$ (или $\sqrt{s}=20.1~{\rm GeV}),\,|t|=0.4~{\rm GeV}^2,\,Z=0.$

2. Вклад флуктуаций углов падения

Поправка $\Delta t[\theta]$ в уравнении (65) зависит от углов падения θ_i и поэтому тоже флуктуирует. Для оценки размера флуктуации $\delta t[\theta]$ поперечные компоненты вектора \vec{n} достаточно брать в приближении нулевого поперечного отклонения точки столкновения, $\vec{r}_{\perp} = 0$. При небольших углах $n_{\perp}^2 \ll 1$ вылета конечного протона и $n_z \approx 1$ дисперсия (точнее, сигма) этой части t равна

$$\delta t[\theta] \approx 2p^2 \sqrt{n_x^2 \,\sigma_{x'}^2 + n_y^2 \,\sigma_{y'}^2} \approx 2p^2 n_\perp \sigma_{x'} \approx 2p \,\sigma_{x'} \sqrt{-t} \approx 0.022 \,\,\mathrm{GeV}^2,\tag{71}$$

где дисперсии углов падения даются уравнениями (10), а численное значение приведено для p = 10 GeV и |t| = 0.4 GeV².

3. Вклад флуктуаций поперечных отклонений

Еще одна, независимая компонента флуктуаций квадрата переданного импульса, $\delta t[r]$, связана с поперечными флуктуациями \vec{r}_{\perp} места встречи и соответствующими флуктуациями n_z . При небольших углах вылета конечных протонов

$$1 - n_z \approx \frac{1}{2} \vec{n}_{\perp}^2 \approx \frac{(\vec{R}_{1\perp} - \vec{r}_{\perp})^2}{2(D - Z)^2},\tag{72}$$

так что флуктуирующая часть переданного импульса равна

$$\Delta t[r] \approx \frac{2p^2}{(D-Z)^2} \, (\vec{R}_{1\perp} \, \vec{r}_{\perp}), \tag{73}$$

а ее дисперсия (точнее, сигма)

$$\delta t[r] \approx \frac{2p^2}{(D-Z)^2} \sqrt{X_1^2 \sigma_x^2 + Y_1^2 \sigma_y^2}$$
$$\approx \frac{2p^2 R_\perp \sigma_x}{(D-Z)^2} \approx \frac{2p \sigma_x}{D-Z} \sqrt{-t} \approx 0.0028 \text{ GeV}^2$$
(74)

(численное значение снова приведено для случая p = 10 GeV, |t| = 0.4 GeV² и Z = 0). Хотя размер пучка σ_x несколько растет с ростом отклонения |Z| места столкновения от центра детектора, очевидно, что вклад угловых флуктуаций все равно остается доминирующим:

$$\frac{\delta t[r]}{\delta t[\theta]} \approx \frac{\sigma_x}{\sigma_{x'}D} = \frac{\sqrt{\beta\beta^*}}{D} \ll 1.$$
(75)

4. Вклад флуктуаций продольного импульса

Приведем для полноты расчет влияния на определение квадрата переданного импульса флуктуаций продольных импульсов частиц в сталкивающихся банчах...

5. Итог

Из четырех рассмотренных источников ошибок в восстанавливаемом значении t доминирует флуктуация $\delta t[\theta]$, определяемая не малыми погрешностями хороших детекторов, а только свойстами пучка (его угловым разбросом). Она пропорциональна $\sqrt{-t}$ и при переходе от переменной $-t \approx p^2 \theta^2$ к углу рассеяния θ трансформируется во флуктуацию угла

$$\delta\theta \approx \sigma_{x'} = \text{const.}$$
 (76)

Таким образом, флуктуации в восстанавливаемом сцм-угле рассеяния θ оказываются равными угловой дисперсии (сигме) налетающих протонов и не зависят от самого угла. Поэтому максимальное и равномерное разрешение установки по t достигается при оптимальном и экономном расположении отдельных детекторов конечных протонов с постоянным шагом $\sigma_{x'}$ по углу вылета или постоянным шагом $\Delta R \sim \sigma_{x'} D = 0.5$ сm по радиальному расстоянию от оси.

D. Розыгрыш сечения и конечных частиц

Для розыгрыша сечения $\Delta \sigma$ как веса событий в интеграле (39) будем использовать экспоненциальное приближение (36),

$$d\sigma = A \exp(Bt) dt, \quad A = 70 \text{ mb GeV}^{-2}, \quad B = 10 \text{ GeV}^{-2},$$
 (77)

и вычислять в нем (но только в нем!) t и dt приближённо, в идеализированной кинематике, игнорирующей малые отклонения начальных протонов от оси пучка:

$$-t = 2p^{2}(1 - \cos\theta) \approx p^{2} \operatorname{tg}^{2} \theta \equiv \frac{p^{2} R_{1\perp}^{2}}{(D - Z)^{2}} = \frac{p^{2}(X_{1}^{2} + Y_{1}^{2})}{(D - Z)^{2}}.$$
 (78)

Величина

$$dt \approx \frac{2p^2 R_{1\perp} dR_{1\perp}}{(D-Z)^2} \approx \frac{p^2}{\pi} d\Omega$$
(79)

пропорциональна телесному углу $d\Omega \approx 2\pi R_{1\perp} dR_{1\perp}/(D-Z)^2$, под которым из места вылета протонов Z видно детектирующее кольцо. Если нас интересует только фрагмент (бин) кольца прямоугольной формы с размером $dX_1 \times dY_1$, то нужно пропорционально изменить $d\Omega \approx dX_1 dY_1/(D-Z)^2$ и использовать

$$dt \approx \frac{p^2 dX_1 dY_1}{\pi (D-Z)^2}.$$
 (80)

При численном моделировании ниже мы будем брать прямоугольные бины размером $dX_1 = dY_1 = 1$ ст либо кольцевые бины шириной $dR_{1\perp} = 2$ ст.

При исследовании отклика различных частей детектора на поток протонов p'_1 различные точки попадания (X_1, Y_1) должны покрывать весь детектор. Но вместо равномерного покрытия детектора и вычисления с мелким шагом отклика даже там, где он очень мал (в удаленных частях детектора), более разумен вариант, мотивированный гауссовой зависимостью дифференциального сечения $d\sigma \propto \exp(Bt)$ от координат (X_1, Y_1) и концентрирующий сетку мест попаданий на соответствующих небольших расстояниях, определяемых наклоном дифференциального сечения B:

$$X_1 = kG_9, \quad Y_1 = kG_{10}, \quad k = \frac{D - Z}{\sqrt{2p^2 B}}.$$
 (81)

После розыгрыша (X_1, Y_1) становятся фиксированными направления и величины импульсов обоих конечных протонов, и можно вычислить моменты прихода рассеянных частиц в детекторы в разыгранном событии:

$$T_1 = T + \frac{D - Z}{cp'_{1z}}p'_{10}, \quad T_2 = T - \frac{D + Z}{cp'_{2z}}p'_{20}.$$
(82)

Дополнительно к разыгранным переменным мы еще добавим гауссовые случайные поправки, имитирующие погрешности детекторов δR , δT при измерении координат и времён:

$$X_1 \rightarrow X_1 + \delta R \ G_{11}/\sqrt{2},$$

$$Y_{1} \rightarrow Y_{1} + \delta R \ G_{12}/\sqrt{2},$$

$$X_{2} \rightarrow X_{2} + \delta R \ G_{13}/\sqrt{2},$$

$$Y_{2} \rightarrow Y_{2} + \delta R \ G_{14}/\sqrt{2},$$

$$T_{1} \rightarrow T_{1} + \delta T \ G_{15},$$

$$T_{2} \rightarrow T_{2} + \delta T \ G_{16}.$$
(83)

Именно эти поправленные, «наблюдаемые» значения будут использоваться (как в реальном эксперименте) для расчета места и времени столкновения (Z, T) по формулам идеализированной кинематики. Для численных оценок ниже мы примем размер погрешностей детектора протонов $\delta R = 2 \text{ mm}$ и $\delta T = 50 \text{ ps.}$

Вставляя в формулу для выхода протонов dY_{12} в конкретный бин (площадь) детектора $2\pi R_{1\perp} dR_{1\perp}$ или $dX_1 dY_1$ упругое сечение (77) с величиной dt соответственно из уравнения (79) или (80), окончательно записываем выход частиц в данный бин от однократного банч-банч столкновения как

$$dY_{12} = \left\langle \frac{N_1 N_2 \, d\sigma}{4\pi \sigma_x \sigma_y} \right\rangle. \tag{84}$$

VII. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ И ПЕРВЫЕ РЕЗУЛЬТАТЫ

На рисунках 14 и 15 показаны первые результаты описанного монте-карловского розыгрыша 10⁷ событий (конфигураций) при импульсе протонов 10 GeV/*c* (\sqrt{s} = 20.1 GeV), вычисления выхода и некоторых распределений. Закладывалось число протонов в одном банче 10¹² штук (возможно, оно несколько завышено) и бета-функция в центре $\beta^* = 35$ см, отвечающие средней светимости $L = 1.9 \cdot 10^{32}$ сm⁻² s⁻¹ (с учётом фактора $f_{\rm HG} = 0.595$). Остальные параметры пучка (эмиттансы и прочие) описаны в Таблице I.

Рисунок 15 наглядно показывает, насколько важно восстанавливать продольную координату точки столкновения для достижения удовлетворительного разрешения по t.

Рис. 14: Выходы ΔY_{12} в указанные бины 10 GeV/*c* протонов за 1 секунду. Показаны распределения по R_1 и R_2 , а также по |t|, Z, T. Распределение по относительному азимуту показано для протонов с $R_{1,2} > 10$ cm.

Рис. 15: Выходы протонов за 1 секунду в кольцевые 2cm бины площади детектора указываемого радиуса без ограничения по Z и с ограничением места столкновения |Z| < 1 cm, уменьшающего разброс углов рассеяния и t.

VIII. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Критически важно регистрировать оба рассеянных протона, чтобы не только иметь надежную идентификацию событий упругого pp-рассеяния, но и восстанавливать точку вылета Z, угол рассеяния θ и t.

Для контроля возможных проявлений разной эффективности детекторов, расположенных на разных расстояниях от оси, и вызываемой этим ложной зависимости наблюдаемого дифференциального сечения от t можно разделять события на группы с разным Z. Тогда одинаковым t будут отвечать разные углы вылета рассеянного протона и поэтому разные детекторные кольца, что позволит сравнивать и корректировать (нормировать) отклики разных групп детекторов.

Трекер (TR) планируется выполнить на основе straw-трубок диаметром 10 мм, которые будут уложены в перекрывающиеся слои для получения максимальной эффективности измерения треков заряженных частиц ([1], с. 39). Необходимое разрешение трекера около 100 мкм. Эффективность регистрации треков заряженных частиц близкая к 100%.

Если торец трекера TR Endcap охватывает область малых осевых расстояний, начиная с $R \sim 10$ cm, его можно использовать в качестве протонных детекторов для задачи регистрации малоугольного pp-рассеяния.

В любом случае следует предусмотреть такую конструкцию вакуумной трубы, которая обеспечит наиболее беспрепятственный пролет протонов к детекторам под углами в несколько градусов. Это может быть специальная пара (вперед-назад) расширяющихся вакуумных штанов (раструбов), охватывающих горизонтальную полосу высотой $\approx \pm 10$ ст и шириной на широком конце $\approx \pm 40$ ст. В торцевых стенках штанов возможны рассеяния, которые еще предстоит оценить, учесть и минимизировать.

На следующем этапе работы — помимо более детального изучения и изложения результатов моделирования — следует продумать кинематику и схему детектирования частиц в случае столкновений pd и dd, в которых дейтрон не выживает как целая частица, а рассыпается на протон и нейтрон.

Хочу также добавить оценку флуктуаций tиз-за разброса импульсов частиц в пучках.

Следует также оценить влияние магнитного поля, которое подавлено на самой оси ради сохранения спинов частиц пучка, но все-таки присутствует вне оси пучка.

Учёт магнитного поля и рассеяния частиц в веществе требуют использования полноценных пакетов SPD-моделирования с их модификацией для учёта нюансов, изученных в этих заметках (Полянский В.В. ?).

Благодарности

Работа поддержана грантом РФФИ-NICA № 18-02-40061.

Project NICA

[1]	Технический проект объекта «Комплекс NICA» (Dec 28, 2018).
[0]	VD Kekelidze VA Metweev IN Meshkey AS Serin CV Trubnikey
[2]	NICA Project at UNP Nucletron based Ion Collider facility
	Talk at 16th Lomonosov Conference on Elementary Particle Diverse Lomonosov Messov State
	University August 22, 26, 2012 Data Machkov2012 pdf
[3]	V D. Kekelidze B. Lodnicky, V A. Matyoov, LN. Moshkov, A.S. Sorin, C.V. Trubnikov,
լՍ	Three stages of the NICA accelerator complex
	Fur Phys. I. A 52 (2016) 211 Φ_2 are Kekelidze 2016 pdf
[4]	NICA White Paper (Jap 24, 2014)
[4]	http://mpd.jipr.ru/wp-content/uploads/2016/04/WhitePaper 10.01.pdf
	Перели MitePaper 10.01 pdf
[5]	INB NICA-SPD Concentual and technical design of the Spin Physics Detector (Nov 26
[o]	2018) Materian and PAC 2018
	http://spd jinr ru/documents Файл SPDforPAC Nov26-2018 pdf
[6]	NICA — Nuclotron-based Ion Collider fAcility.
[*]	http://nica.jinr.ru
[7]	MPD experiment. Technical website.
LJ	http://mpd.jinr.ru
[8]	NICA Collider.
	http://nucloweb.jinr.ru/nica/colliderl.html
[9]	NICA CDR documentation.
	http://nucloweb.jinr.ru/nica/CDR.html
[10]	NICA TDR documentation of 2015:
	$\rm http://nucloweb.jinr.ru/nica/TDR/2015/TDR_Volume_1.pdf$
	$http://nucloweb.jinr.ru/nica/TDR/2015/TDR_Volume_2.pdf$
	$\rm http://nucloweb.jinr.ru/nica/TDR/2015/TDR_Volume_3.pdf$
	$http://nucloweb.jinr.ru/nica/TDR/2015/TDR_Volume_4.pdf$
[11]	NICA, раздел Collider.
	http://nica.jinr.ru/projects/collider.php
[12]	С.А. Костромин, И.Н. Мешков, А.О. Сидорин, А.В. Смирнов, Г.В. Трубников, Н.А. Шурх-
	но. Применение методов охлаждения пучков в проекте NICA.
	Письма в ЭЧАЯ, Т. 9, вып. 4–5 (2012) 537–562. Файл Kostromin2012.pdf
[13]	MPD-CDR документация.
	$\rm http://mpd.jinr.ru/wp-content/uploads/2016/04/MPD_CDR_ru.pdf$
[14]	MPD-design-layout документация.
	http://mpd.jinr.ru/doc/mpd-design-pictures/mpd-layout
	Textbooks

- [15] H. Wiedemann. Particle Accelerator Physics (3ed., Springer, 2007). Файл Wiedemann2007.pdf
- [16] S.Y. Lee. Accelerator Physics (2ed, World Scientific, 2004). Файл Lee2004.djvu
- [17] A. Chao, M. Tigner (eds.). Handbook of Accelerator Physics and Engineering (World Scientific,

1998). Файл Handbook1998.djvu

Luminosity

- [18] P. Grafström, W. Kozanecki. Luminosity determination at proton colliders. Progress in Particle and Nuclear Physics 81 (2015) 97–148. Файл Grafstrm2015.pdf
- The LHCb collaboration. Precision luminosity measurements at LHCb. JINST 9 (2014) P12005. https://iopscience.iop.org/article/10.1088/1748-0221/9/12/P12005

Файл The LHCb collaboration 2014 J. Inst. 9 P12005.pdf

[20] W. Kozanecki. Luminosity measurement and calibration at the LHC. Файл L-msmt-n-calib Saclay WK 20Feb17.pdf, 57 p.

pp-anomaly

- [21] С.П. Денисов, А.В. Козелов, В.А. Петров. О возможности прецизионного измерения дифференциального сечения упругого *pp*-расеяния на ускорителе ИФВЭ. Яд. Физ. 79, вып. 2 (2016) 121. Файл Denisov2016.pdf
- [22] Ю.М. Антипов, В.А. Беззубов, Ю.П. Горин, С.П. Денисов, Ф.А. Ёч, А.А. Лебедев, А.И. Петрухин, С.А. Половников, В.Н. Ройнишвили, Д.А. Стоянова. Упругое рассеяния π⁺-, K⁺-мезонов и протонов на протонах в области импульсов 29–65 ГэВ/с. Препринт ИФВЭ ПЭФ 76–85 (1976), 44 стр. Файл Denisov1976.pdf
- [23] L. Jenkovszky, I. Szanyi, C.-I. Tan. Shape of proton and the pion cloud. Eur. Phys. J. A 54 (2018) 116. Файл Jenkovszky2018.pdf