CALIBRATION BEAMS OF THE ACCELERATOR S-25R "PAKHRA"

V.I. Alekseev, V.A. Baskov, V.A. Dronov, V.A. Koltsov, A.I. Lvov, Yu.F. Krechetov*, E.I. Malinovski, I.A. Mamonov, <u>V.V. Polyanskiy</u>, S.S. Sidorin

P.N. Lebedev Physical Institute of the RAS, Department of Nuclear Research TSD (Troitsk Separate Division), Moscow * - Joint Institute for Nuclear Research, Dubna

ELECTRONIC SYNCHROTRON S-25R DNR LPI

Number of rotary magnet sections -4Equilibrium orbit radius in the magnet, $R_0 - 400$ cm Field in the magnet, Hmax -1 T Resonator excitation frequency - 55 MHz Injection energy (field) -7,4 MeV (0,006 T) Energy of electrons in the ring (today!), E - 200 - 850 MeVNumber of electrons in the ring, Imax $- \sim 10^{12} \text{ e}^{-/\text{sec}}$ Beam dumping repetition rate, f - 50 HzStretching time of beam dumping, $\Delta Tmax - 2ms$ Duty factor -0.15

Accelerator beams schema S-25R «PAKHRA» DNR LPI.

The Secondary electrons calibration beam

The Calibration beam scheme (secondary electrons):

- 1 lead collimators and protection walls;
- 2 SP-3 cleaning magnet;
- 3 converter;
- 4 SP-57 spectrometric magnet;
- 5 photon beam absorber;
- 6 collimators and Pb-wall;
- 7 scintillation counter anti-coincidences A;
- 8, 9 trigger scintillation counters S_1 и S_2 ;

10 – Total absorption Cherenkov spectrometers (TAChS).

The gamma-beam

The bremsstrahlung radiations spectrum obtained by using TAChS (and the 5 mm width slotted lead collimator was used). $\langle E \rangle = 56 \text{ M} \Rightarrow B$.

Gamma-beam monitoring

The Cherenkov radiation of conversion e + e- pairs was used, because:

1. The Fast time for the formation of the Cherenkov radiation pulse (the scintillation pulse by \sim 3-5 times in comparison);

2. The interaction of photons with matter in comparison with the interaction of electrons is less intense ~ 10^3 - 10^4 less;

3. The high radiation resistance of plexiglass compared to scintillator.

All this makes it possible to use Cherenkov counters in photon beams with an intensity up to ~ $10^{10} \gamma$ /sec. With a beam diameter in the SP-57 region about 30 mm and a channel width of the Cherenkov hodoscope based on plexiglass arround 5 mm, the channel count can be about $10^3 - 10^4 1$ /s. This makes it possible to use such a hodoscope as an active radiator to determine the point of conversion of a photon into an electron-positron pair and the point of entry of this pair into the SP-57 magnetic field.

Gamma-beam monitoring

SP-57 magnet (4).

The Working Area of the Experimental Hall

Trigger: T = $(C_1 \cdot C_2 \cdot C_3) \cdot A$

Size of trigger counters: C_1 , C_2 , $C_3 - 15 \times 15 \times 1 \text{ MM}^3$ $A - 40 \times 90 \times 10 \text{ MM}^3$, hole diameter $\otimes 10 \text{ MM}$

30 05

The workplace – general view

Coordinate table : Positioning range: on X - |50| cm: Y - |15| cm Positioning accuracy: $\Delta x (\Delta y) = 2$ mm P_{detector} up to 30 kg

"SPD at NICA — 2019" Seminar, 23.12.2019

05

2019

The secondary electron beam

The energy diapazone of gamma-quants, $E_{max} - 200 - 500 \text{ MeV}$ The intensity of gamma-quants $- \sim 1.7 \cdot 10^9 \text{ y/sec}$ Converter thickness (3) - 0.1 - 5 mm CuCollimator diameter (6) - 10 mmThe field of SP-57 magnet (4) - 0.2 - 1.0 TThe energy of secondary electrons (calibration beam) $- E_e = 30 - 300 \text{ MeV}$

The energy resolution:

The energy diapazone $-\Delta E = 100 - 300 \text{ MeV}$ The energy resolution $-\delta = 10 - 4.5 \%$

The Energy-vs-Thikness dependence of the secondary electrons on SP-57 field.

The channel element parameter optimization

 Trigger parameters T = (S1 × S2) × A (number of counters, size of counters and distance between them) (7 and 8)
Converter thickness (3)
Diameter of the collimator hole (6)

Results

The Relative energy resolution-vs-Average energy of secondary electrons dependence at tc = 1 mm and d = 3 mm.

The Relative energy resolution-vs-Collimator hole diameter ("d") dependence of secondary electrons and on thickness t_c at the secondary electrons energy E = 280 MeV. In the figure: 1 - tc = 3 mm; 2 - tc = 5 mm; 3 - tc = 10 mm.

Results

The Secondary electrons intensity-vs-converter thickness t_c dependence and on the collimator hole diameter "d" at an electrons energy of E = 280 MeV. In the figure: 1 - d = 3 mm; 2 - d = 5 mm; 3 - d = 10 mm.

The energy dependence of the secondary electrons at $t_c = 1$ mm and d = 3 mm.

The slow extraction channel

The slow extraction channel e-beam.

S-25R «PAKHRA» DNR LPI.

The slow extraction channel

- intensity at the output flange of the accelerator $\sim 10^{10}$ e⁻/sec
- intensity in the working area of the 1st hall $\sim 10^4 \text{ e}^-/\text{MeV}$
- preferred energy diapazone $E_e = 300 400 \text{ MeV}$
- possible energy range $E_e = 200 500$ MeV,
- $-\delta_{e} \sim 1\%$.

Work on the Calibration Channel, performed in 2017 - 2019.

№ п/п	Институт, установка, группа, ответственный	Цель работы	Место работы (№ зала)	Время работы	Примечание
1	ГАММА-400, Архангельский А	Калибровка аппаратуры и детекторов	2	1 - 8 декабря 2017 г.	
2	ИЯИ, Джилкибаев Р.	Исследование характеристик нейтронного детектора	2	26 декабря 2017 г.	
3	ГАММА-400, Архангельский А.	Калибровка аппаратуры и детекторов	2	18 - 23 апреля 2018 г.	
4	ГАММА-400, Архангельский А.	Калибровка аппаратуры и детекторов	2	21 - 25 мая 2018 г.	
5	ГАММА-400, Архангельский А.	Калибровка аппаратуры и детекторов	2	28 - 30 ноября 2018 г.	
6		Работыт не велись ввиду отсутствия электроэнергии		март – сентябрь 2019 г.	Авария на подстанции ускорителя С-25Р
7	MPD NICA (Дубна), Тяпкин А.	Исследование характеристик одиночного модуля электромагнитного калориметра ECAL MPD	2	30, 31 октября 2019 г.	
8	Установка ВМN (Дубна)	Исследование эффективности работы элемента черенковского годоскопа на основе кварцевого стекла	2	6 ноября 2019 г.	
9	SCAN-3 (Дубна), Афанасьев С.В.	Калибровка триггерного счетчика и электронного оборудования установки SCAN-3	2	10 декабря 2019 г.	
10	SCAN-3 (Дубна), Малахов , Дмитриев А.	Тестирование многозарядных резистивных плоских камер	2	9, 11 и 12 декабря 2019 г.	
11	MPD NICA (Дубна), Тяпкин А.	Исследование характеристик элементов электромагнитного калориметра ECAL MPD	2		Работа запланирована на январь 2020 г.
12	ГАММА-400, Архангельский А.	Калибровка аппаратуры и детекторов	2		Работа запланирована на февраль 2020 г.

Results of 2017-2019, articles

1. Алексеев В.И., Басков В.А., Дронов В.А., Львов А.И., Кречетов Ю.Ф., Малиновский Е.И., Павлюченко Л.Н., Полянский В.В., Сидорин С.С. «КАЛИБРОВОЧНЫЙ КВАЗИМОНОХРОМАТИЧЕСКИЙ ПУЧОК ВТОРИЧНЫХ ЭЛЕКТРОНОВ УСКОРИТЕЛЯ С-25Р «ПАХРА»» // ПТЭ. 2019. № 2. С.1-7; DOI: 10.1134/S0032816219020162

2. Алексеев В.И., Басков В.А., Дронов В.А., Львов А.И., Кречетов Ю.Ф., Малиновский Полянский В.В «**РЕГИСТРАЦИЯ НИЗКОЭНЕРГЕТИЧЕСКИХ ЭЛЕКТРОНОВ ЧЕРЕНКОВСКИМ СПЕКТРОМЕТРОМ ПОЛНОГО ПОГЛОЩЕНИЯ**» // arXiv.org > physics > arXiv: 1911. 12608; КСФ, 2019, №9, С.31-37.

3. Алексеев В.И., Басков В.А., Далькаров О.В., Кольцов А.В., Львов А.И., Мамонов И.А., Павлюченко П.Н., Полянский В.В. «**МОНИТОР ЭЛЕКТРОННОГО ПУЧКА НА ОСНОВЕ ЧЕРЕНКОВСКОГО СЧЕТЧИКА**» // КСФ, 2019, №11, С. 37-43).

4. Алексеев В.И., Басков В.А., Дронов В.А., Львов А.И., Кречетов Ю.Ф., Кольцов А.В., Полянский В.В., Сидорин С.С. «**ХАРАКТЕРИСТИКИ КАЛИБРОВОЧНОГО ПУЧКА ВТОРИЧНЫХ ЭЛЕКТРОНОВ УСКОРИТЕЛЯ С-25Р «ПАХРА»**» // arXiv.org > physics > arXiv: 1912. 08095; КСФ. 2020 (отправлена в печать 19.12.2019 г.).

5. Алексеев В.И., Басков В.А., Дронов В.А., Кольцов А.В., Львов А.И., Полянский В.В., Сидорин С.С. «СИСТЕМА МОНИТОРИРОВАНИЯ КАЛИБРОВОЧНОГО ЭЛЕКТРОННОГО ПУЧКА УСКОРИТЕЛЯ С-25Р «ПАХРА»» // ПТЭ. 2020 (подготовлена к печати).

6. Алексеев В.И., Басков В.А., Дронов В.А., Кольцов А.В., Львов А.И., Полянский В.В. «ОПРЕДЕЛЕНИЕ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕКТРОННОГО ПУЧКА МЕТОДОМ "ПОГЛОЩЕННОЙ ЭНЕРГИИ"» NIM или ПТЭ. 2020 (подготовлена к печати).

Results of 2017-2019, conferences and seminars

1. В.И. Алексеев, В.М. Алексеев, <u>В.А. Басков</u>, В.А. Карпов, А.И. Львов, Е.И. Малиновский, В.В. Полянский, С.А. Ралко, А.В. Серов, Г.Г. Субботин... **«СУЩЕСТВУЮЩИЕ И ВОЗМОЖНЫЕ КАЛИБРОВОЧНЫЕ ПУЧКИ УСКОРИТЕЛЯ С-25Р (ПАХРА)»,** Семинар-обсуждение, 17.05.2016 г., ФИАН, ГАММА-400

2. <u>В. А. Басков</u> «КОМПЛЕКС ПУЧКОВ ЭЛЕКТРОНОВ И ФОТОНОВ СРЕДНИХ ЭНЕРГИЙ ДЛЯ ФУНДАМЕНТАЛЬНЫХ И ПРИКЛАДНЫХ РАБОТ», семинар ОФВЭ ФИАН, 10.02.2017 г., Троицк.

3. V I Alekseev, <u>V A Baskov</u>, V A Dronov, A I L'vov, A V Koltsov, Yu F Krechetov, E I Malinovsky, L N Pavlyuchenko, V V Polyanskiy and S S Sidorin «**A quasi-monochromatic electron beam of "Pahra" accelerator for calibration of detectors**», IV International Conference on Particle Physics and Astrophysics, 22-26.10.2018, MEPhI, Moscow.

4. V. Alexeev, <u>V. Baskov</u>, V. Dronov, A. L'vov, A. Kol'zov, V. Polyansky **«Beams of "Pahra" accelerator of the P.N. Lebedev Physical Institute for calibrations of SPD detectors**», "SPD at NICA — 2019" workshop, 4-8.06.2019, Dubna

5. <u>И. А. Мамонов</u> И.А. «**Тестовые пучки синхротрона ФИАН С-25Р** «**Пахра**»», Молодежная конференция по теоретической и экспериментальной физике, МКТЭФ-2019, 25-28 ноября 2019 г., ИТЭФ

6. В.И. Алексеев, <u>В.А. Басков</u>, В.А. Дронов, В.А. Кольцов, А.И. Львов, Ю.Ф. Кречетов, Е.И. Малиновский, В.В. Полянский, С.С. Сидорин «**КАЛИБРОВОЧНЫЕ ПУЧКИ УСКОРИТЕЛЯ С-25Р**» семинар ОЯИ ТОП ФИАН, 10.02.2017 г., Троицк.

Conclusion

 In the DNR TSD LPI, calibration beams have been created and are functioning: Bremsstrahlung radiations Electrons (positrons)

2. **DNR TSD LPI** (in fact) is becoming the calibration center of equipment and detectors in the nuclear physics.

- 3. The possibility of creating a neutron test beam (with the participation of JINR) is being studied.
- 4. It is possible to recreate the beam Tagged photons

CALIBRATION BEAMS OF THE ACCELERATOR S-25R "PAKHRA"

Thanks for attention !