

Zero degree calorimeter Conceptual design

I. Alekseev, A. Golubev, D. Kirin, V. Rusinov, D. Svirida, A. Stavinsky, E. Tarkovsky (ITEP, Moscow)

ZDC in collider experiments Outline

- 0. Introduction:
 - ZDC = neutron, γ detection at $|\eta| \ge 8.5$ (characteristics, status ...).

Accelerator physics [pp,pA,AA]:

- Luminosity monitoring/calibration, beam-tuning, IP5 crossing angle.

High-energy nuclear physics [pA, AA]:

- Online: minimum bias trigger, vertex.
- Global event characterization: centrality, reaction-plane.
- Absolute luminosity (via EM dissociation).

3 Diffractive physics [pp,pA,AA]:

- IP + IP: Tagging of rapidity gaps in central hard diffraction.
- γ +A: Neutron-tagging of central hard QCD γ -production.
- γ + γ : Neutron-tagging of QED processes.

Igor Alekseev (ITEP)

4 UFIE cosmic ray physics [pp. pA, AA].

Calibration of >100-PeV forward hadronic cascade development.

+ Local polarimetry

Accelerator luminosity monitor

+ Absolute luminosity in Electromagnetic dissociation

AA and pA min. bias. trigger and centrality

No ZDC activity = large rapidity gap. Complements (trigger & offline) leading proton detectors e.g. in dijet single diffraction:

Bottom line: ZDC reduces to "zero" holes & cracks in CMS (full 4π). Helps all diffractive (IP-, γ -mediated) analysis in pp,pA,AA.

All UPC measurements at RHIC: ZDC-triggered (neutron tagging) !

Local polarimetry

Radiation hardness

- Design goals:
 PHENIX 100 krad
 - CMS 20 Grad
- HAMAMATSU SiPM:
 - \succ 10¹¹ n/cm² working
 - 10¹² n/cm² practical limit

Igor Alekseev (ITEP)

Number of neutrons going from IP is not large – main problem beam halo etc.

(qu) xp/op 0.7

0.6

0.5

0.4

0.3

0.2

0.1

$$L \sim 10^{32} \text{ cm}^{-2} \text{ c}^{-1}$$

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Forward neutron production x_F

√s=200 GeV : PHENIX exponential p_⊥ form

√s=200 GeV : PHENIX gaussian p₊ form

√s=30.6 GeV : ISR

√s=44.9 GeV : ISR

s=52.8 GeV : ISR

8

- 1. *Размеры для справок.
- 2. А область возможного размещения Zero degree calorimeter.

Main tasks

- Time tagging of the events for event selection;
- Luminosity measurement;
- Local polarimetry with forward neutrons;
- Spectator neutron tagging.

Requirements:

- ✓ Time resolution 150-200 ps;
- Energy resolution for neutrons 50-60%/ $\sqrt{E} \oplus 8-10\%$;
- Neutron entry point geometry resolution 10 mm;
- Neutron to gamma discrimination.

Questions:

- Do we have enough space ?
- **Can we obtain the time resolution ?**

- Sampling calorimeter with fine segmentation, 5x5 matrix.
- SiPM light readout
- About 1000 channels
- Optimization based on MC and measurements with prototype is required
- Readout system based on electronics designed for the DANSS neutrino experiment at Kalininskaya NPP, modified to 500 MSPS digitization.

Igor Alekseev (ITEP)

Time resolution test

Average energy deposit per tile ~ 6 MeV

- Plain: 3x3 scintillator cubes 3x3x3 cm³ each
- 3X3 mm² SENSL 30050 SiPM (2668 pixels)
- Whitened cubes with direct readout

Test layout

DANSS SiPM power and preampifier board

- Two types of digitization:
- ✓ Tektronix TDS3054B scope with 5 Gsampl/s
- ✓ DANSS with 125 Msampl/s WFD, but a large dynamic range

Test results

Hardware trigger on the central cube.

Light collection ~ 120 ph.e./MIP or ~20 ph.e./MeV

Software trigger – amplitude in all 3 cubes in the MIP region

μ

Propagation to calorimeter

- Both methods are working
- **Time resolution scales** $\sim 1/VE$
- Aim of 200 ps could be reached at ~160 MeV particle energy

Conclusions

- ZDC calorimeter is a standard device required for collider experiment success (tagging, luminosity, local polarimetry)
- ZDCs are installed in ALL operating IPs at RHIC and LHC
- The concept of a sampling calorimeter with plastic scintillator and fine segmentation and SiPM readout is very promising
- The test with cosmic muons demonstrated that the time resolution can be reached
- See details on the energy and space resolution simulations in the next talk

SiPM bias and preamplifiers

64-channel WFD

- ► 64 channels of 125 MSPS 12 bit flash ADCs
 - > 16 channels of 500 MSPS
- VME 64x standard 6U single slot width board
- 64-bit block transfer support
- Xilinx Spartan-6 FPGAs for digital signal processing and communication
- 4 Gbit of SDRAM for data storage
- I Gbit Ethernet connection for faster readout
- Multitrigger and triggerless operation
- Base line subtraction and zero suppression for wave form storage
- Selftrigger with prescale for SiPM noise measurements
- Internal or external clock operation
- Deadtimeless operation

Instruments and Experimental Techniques, 2018, Vol. 61, No. 3, pp. 349–354.

Igor Alekseev (ITEP)

Performance at DANSS

Igor Alekseev (ITEP)

(2.2) AA reaction-plane determination

- Event-by-event reaction plane obtained from sidewards deflection of spectator neutrons ("bounce-off"):
- Elliptic flow directly related to initial parton pressure.

۸₁ (%)

(2.3) pA, AA absolute luminosity

Reference process: Electromagnetic dissociation (plus forw./back. neutron emission) computable within $\sim 5\%$:

EM:

AuAu: Baltz&White [NIMA 417 (98) 1] Klein&Vogt [PRC 68 (03) 017902] dAu:

TABLE I. Ratios of cross sections for experiment and theory. The values of σ_{tot} and σ_{geom} are in barns.

σ_i	PHENIX	PHOBOS	BRAHMS	[3]	[4]
$\sigma_{ m tot}$				10.8 ± 0.5	11.2
$\sigma_{ m geom}$				7.1	7.3
$\frac{\sigma_{\rm geom}}{\sigma_{\rm tot}}$	0.661 ± 0.014	0.658 ± 0.028	0.68 ± 0.06	0.67	0.659
$\frac{\sigma(1,X)}{\sigma_{\text{tot}}}$	0.117 ± 0.004	0.123 ± 0.011	0.121 ± 0.009	0.125	0.139
$\frac{\sigma(1,1)}{\sigma(1,X)}$	0.345 ± 0.012	0.341 ± 0.015	0.36 ± 0.02	0.329	
$\frac{\sigma(2,X)}{\sigma(1,X)}$	0.345 ± 0.014	0.337 ± 0.015	0.35 ± 0.03		0.327
$\frac{\sigma(1,1)}{\sigma_{\rm tot}}$	0.040 ± 0.002	0.042 ± 0.003	0.044 ± 0.004	0.041 ± 0.002	•••

David d'Enterria (CERN, PH-EP)

LEMIC, CERN, 28/02/2006