

Zero degree calorimeter Conceptual design

I. Alekseev, A. Golubev, D. Kirin, V. Rusinov, D. Svirida, A. Stavinsky, E. Tarkovsky (ITEP, Moscow)

ZDC in collider experiments **Outline**

- 0. Introduction:
	- ZDC = neutron, γ detection at $|\eta| \geq 8.5$ (characteristics, status ...).

O Accelerator physics [pp, pA, AA]:

- Luminosity monitoring/calibration, beam-tuning, IP5 crossing angle.

2 High-energy nuclear physics [pA, AA]:

- Online: minimum bias trigger, vertex.
- Global event characterization: centrality, reaction-plane.
- Absolute luminosity (via EM dissociation).

8 Diffractive physics [pp, pA, AA]:

- $I\!\!P+I\!\!P$: Tagging of rapidity gaps in central hard diffraction.
- $-\gamma + A$: Neutron-tagging of central hard QCD γ -production.
- $-\gamma + \gamma$: Neutron-tagging of QED processes.

4 UHE COSINIC FOY physics [pp.p.A.,A

Calibration of >100-PeV forward hadronic cascade development

+ Local polarimetry

David d'Enterria (CERN, PH-EP)

Accelerator luminosity monitor

4 Absolute luminosity in Electromagnetic dissociation 4

AA and pA min. bias. trigger and centrality

-
- No ZDC activity = large rapidity gap. Complements (trigger & offline) ➤ leading proton detectors e.g. in dijet single diffraction:

Bottom line: ZDC reduces to "zero" holes & cracks in CMS (full 4π). Helps all diffractive (IP -, γ -mediated) analysis in pp, pA, AA.

All UPC measurements at RHIC: ZDC-triggered (neutron tagging) !

Local polarimetry

Radiation hardness

- **▶ Design goals:** \triangleright PHENIX 100 krad
	- \triangleright CMS 20 Grad
- HAMAMATSU SiPM:
	- $\geq 10^{11}$ n/cm² working
	- $\geq 10^{12}$ n/cm² practical limit
- \triangleright Number of neutrons going from IP is not large – main problem beam halo etc.

Vs=200 GeV : PHENIX exponential p_ form

п

9

 X_F

 \sqrt{s} =200 GeV : PHENIX gaussian p_r form

 \sqrt{s} =30.6 GeV : ISR

 \sqrt{s} =44.9 GeV : ISR

vs=52.8 GeV : ISR

 \sqrt{s} =62.7 GeV : ISR

 0.9

 0.8

 0.7

 0.6

 0.5

 $d\sigma/dx$ (mb)

Igor Alekseev (ITEP) 8 or ~ **10⁹ year-1cm-2**Size at 13 m ~ 25 cm or $S \sim 2000 \text{ cm}^2$ $\sigma \sim 0.3$ mb $L \sim 10^{32}$ cm⁻² c⁻¹ $N \sim 60$ kHz ~ 30 cm $^{-2}$ c $^{-1}$

- *Размеры для справок. \mathcal{I}
- 2. А область возможного размещения Zero degree calorimeter.

Main tasks

- Time tagging of the events for event selection;
- Luminosity measurement;
- Local polarimetry with forward neutrons;
- Spectator neutron tagging.

Requirements:

- $\overline{}$ Time resolution 150-200 ps;
- Finally resolution for neutrons 50-60%/ $\sqrt{E} \oplus 8$ -10%;
- Neutron entry point geometry resolution 10 mm;
- Neutron to gamma discrimination.

Questions:

- **Do we have enough space ?**
- **Can we obtain the time resolution ?**

- Sampling calorimeter with fine segmentation, 5x5 matrix.
- SiPM light readout
- About 1000 channels
- Optimization based on MC and measurements with prototype is required
- Readout system based on electronics designed for the DANSS neutrino experiment at Kalininskaya NPP, modified to 500 MSPS digitization.

Time resolution test

Average energy deposit per tile \sim 6 MeV

- Plain: 3x3 scintillator cubes 3x3x3 cm³ each
- **3X3 mm² SENSL 30050 SiPM (2668 pixels)**
- Whitened cubes with direct readout

Test layout

- DANSS SiPM power and preampifier board
- Two types of digitization:
- \checkmark Tektronix TDS3054B scope with 5 Gsampl/s
- \checkmark DANSS with 125 Msampl/s WFD, but a large dynamic range

Test results

Hardware trigger on the central cube.

Light collection ~ 120 ph.e./MIP or ~20 ph.e./MeV

Software trigger – amplitude in all 3 cubes in the MIP region

μ

Propagation to calorimeter

- \Box Both methods are working
- Time resolution scales ~ 1/√E
- \Box Aim of 200 ps could be reached at \sim 160 MeV particle energy

Conclusions

- ZDC calorimeter is a standard device **required** for collider experiment success (tagging, luminosity, local polarimetry)
- \Box ZDCs are installed in ALL operating IPs at RHIC and LHC
- \Box The concept of a sampling calorimeter with plastic scintillator and fine segmentation and SiPM readout is very promising
- \Box The test with cosmic muons demonstrated that the time resolution can be reached
- \Box See details on the energy and space resolution simulations in the next talk

SiPM bias and preamplifiers

64-channel WFD

- ► 64 channels of 125 MSPS 12 bit flash ADCs
	- 16 channels of 500 MSPS
- ► VME 64x standard 6U single slot width board
- ► 64-bit block transfer support
- ▶ Xilinx Spartan-6 FPGAs for digital signal processing and communication
- ► 4 Gbit of SDRAM for data storage
- ► 1 Gbit Ethernet connection for faster readout
- ► Multitrigger and triggerless operation
- ► Base line subtraction and zero suppression for wave form storage
- ► Selftrigger with prescale for SiPM noise measurements
- ► Internal or external clock operation
- ▶ Deadtimeless operation

Instruments and Experimental Techniques, 2018, Vol. 61, No. 3, pp. 349–354.

Performance at DANSS

(2.2) AA reaction-plane determination

- \triangleright Event-by-event reaction plane obtained from sidewards deflection of spectator neutrons ("bounce-off"):
- \triangleright Elliptic flow directly related to initial parton pressure.

David d'Enterria (CERN, PH-EP)

 $V_1(^{96}_{9})$

(2.3) pA, AA absolute luminosity

Reference process: Electromagnetic dissociation (plus forw./back. neutron emission) computable within ~5%:

AuAu: Baltz&White [NIMA 417 (98) 1] Klein&Vogt [PRC 68 (03) 017902] dAu:

TABLE I. Ratios of cross sections for experiment and theory. The values of σ_{tot} and σ_{geom} are in barns.

σ_i	PHENIX	PHOBOS	BRAHMS	[3]	$[4]$
$\sigma_{\rm tot}$	\sim \sim \sim	\cdots	$-1.1 - 1.1$	10.8 ± 0.5	11.2
σ_{geom}	.	.	.	7.1	7.3
$\sigma_{\rm geom}$ $\sigma_{\rm tot}$	0.661 ± 0.014	0.658 ± 0.028	0.68 ± 0.06	0.67	0.659
$\sigma(1,X)$ $\sigma_{\rm tot}$	0.117 ± 0.004	0.123 ± 0.011	0.121 ± 0.009	0.125	0.139
$\frac{\sigma(1,1)}{\sigma(1,X)}$	0.345 ± 0.012	0.341 ± 0.015	0.36 ± 0.02	0.329	\cdots
$\sigma(2,X)$ $\sigma(1,X)$	0.345 ± 0.014	0.337 ± 0.015	0.35 ± 0.03	\cdots	0.327
$\sigma(1,1)$ $\sigma_{\rm tot}$	0.040 ± 0.002	0.042 ± 0.003	0.044 ± 0.004	0.041 ± 0.002	$\sim 10^{-1}$

David d'Enterria (CERN, PH-EP)

LEMIC, CERN, 28/02/2006