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Abstract—Transverse single-spin asymmetries in the production of direct photons at the Nuclotron-based
Ion Collider fAсility (NICA) are studied within the generalized parton model and its color gauge-invariant
extension. Predictions for the possible asymmetry values at various NICA energies are presented. A
kinematical region where the contribution of the gluon Sivers function to the asymmetry in question is
dominant over the quark Sivers function is found.
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1. INTRODUCTION

Investigation of transverse single-spin asymme-
tries in terms of the Sivers function [1] provides the
possibility of determining the interrelation between
the spin of a transversely polarized nucleon and the
intrinsic transverse momentum of quarks and gluons.
A precise knowledge of the Sivers function improves
substantially our knowledge of the three-dimensional
structure of the proton and permits estimating the
parton orbital angular momentum [2–5].

For an overview of experimental and theoretical
data on transverse single-spin asymmetries, the in-
terested reader is referred to [6, 7]. At the present
time, investigation of these asymmetries is an indis-
pensable part of research programs for many future
experiments, described, for example, [8, 9], includ-
ing the SPD experiment at the Nuclotron-based Ion
Collider fAсility (NICA) [10], where it is planned to
implement proton–proton and proton–deuteron col-
lisions by employing polarized beams of center-of-
mass collision energy extending up to

√
S = 27 GeV.

At the present time, there exist two basic theoret-
ical approaches to describing transverse single-spin
asymmetries. Of these, one is based on the collinear-
factorization mechanism in the next-to-leading or-
der in the hard scale (twist-3), where the single-
spin asymmetries are expressed in terms of the con-
volution of universal nonperturbative quark–gluon–
quark correlation functions and hard scattering am-
plitudes [11–15]. The other [16–20] relies on the
generalized parton model (GPM) [21] and involves
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introducing, within it parton distributions that de-
pend on the transverse momentum of the primary
quark or gluon [22]; among them the Sivers distri-
bution function plays a key role for transverse single-
spin asymmetries. Its universality (process indepen-
dence) is violated upon taking into account initial-
and final-state interactions (ISI and FSI, respec-
tively) of partons with the spectators of the polarized
proton. The effects of ISI and FSI can be taken
into account in the approximation of one-gluon ex-
change within the color gauge-invariant extension of
the GPM approach [23–25]. A direct relationship be-
tween the GPM and twist-3 approaches was demon-
strated in [26–28]; moreover, their equivalence in the
intersection of their applicability regions was proven
in [29]. Within the GPM approach, a successful
phenomenological description of single-spin asym-
metries was constructed in a number of studies—
in [30–33] for open- and hidden-charm production
and in [34, 35] for the production of pions and direct
photons.

The quark Sivers function has been studied both
experimentally and theoretically (see, for exam-
ple, [36, 37] and references therein). Much less is
known about the gluon Sivers function [38]. In order
to study this function, it is advisable to consider
hadron–hadron collision processes such in which its
contribution is expected to be dominant. They include
the process of direct photon production, since it is
dominated by the Compton process of quark–gluon
scattering. Moreover, a photon does not carry a color
charge; therefore, there is no need for introducing a
model for describing final-state hadronization and for
taking into account FSI effects.

The objective of the present study is to calculate
transverse single-spin asymmetries within the GPM
approach and to assess the possibility of observing
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738 SALEEV, SHIPILOVA

them in processes of direct photon production in p↑p
collisions at the NICA energies.

2. DIRECT-PHOTON PRODUCTION
IN THE COLLINEAR PARTON AND
GENERALIZED PARTON MODELS

Inclusive photons of high transverse momentum
(pT ) may be produced both directly in a hard parton
subprocess and as the result of emission from the final
parton produced in the hard subprocess. Therefore,
we will call them direct photons and fragmentation
photons, respectively.

In the leading order (LO) of the collinear parton
model (CPM), where one retains O(αsαem) terms,
direct photons originate from two subprocesses: q +
g → q + γ Compton scattering, which is strongly
dominant, and quark–antiquark annihilation lead-
ing to the production of a photon and a gluon, q +
q̄ → g + γ, where, for pT � 2−6 GeV, q = u, d, s.
The same processes are considered within the GPM
approach used here. To date, calculations of the
cross section for direct photon production within the
CPM framework have been performed in the next-to-
leading order (NLO) [39–41] and even in the next-
to-next-to-leading order (NNLO) [42] of perturbative
QCD. Within the GPM approach, however, the pro-
cedure for calculating higher order corrections in the
strong coupling constant has not been validated the-
oretically, and they are included phenomenologically
by introducing a К factor. One possible way to include
higher order corrections in the GPM framework is
to take into account the fragmentation production of
photons. This corresponds to the leading-logarithm
approximation at the NLO level. Since fragmentation
photons are emitted primarily from quarks, the pro-
duction of such photons is dominated by processes of
quark–quark scattering. This enhances the contribu-
tion of the quark Sivers function to transverse single-
spin asymmetries. The contribution of the fragmen-
tation production mechanism can be suppressed sub-
stantially upon imposing conditions of cone isola-
tion on photon production in inclusive processes [43].
Considering the production of isolated photons, one
can guarantee the dominance of the contribution of
the gluon Sivers function over the contribution of
the quark one in the asymmetry being considered
and restrict oneself to taking into account the con-
tribution of direct photons exclusively in theoretical
calculations.

In the LO approximation, the standard formula of
CPM factorization of the differential cross section for
direct photon production has the form

dσCPM
dir =

∫
dx1fa(x1, μ

2) (1)

×
∫

dx2fb(x2, μ
2)dσ̂(a(q1)b(q2) → γ(pγ)c),

dσ̂ =
1

16π2I

d3pγT
E3

(2)

× |M(a(q1)b(q2) → γ(pγ)c)|2 δ(ŝ + t̂+ û),

where dσ̂ is the cross section for hard Compton scat-
tering or annihilation; I = 2x1x2S is the flux factor;
fa(b)(x1,2, μ

2) stand for the collinear distributions of
partons a(b) in the protons; x1 and x2 are the parton
fractions of the longitudinal momentum of protons
colliding at the energy of

√
S =

√
(P1 + P2)2 in their

center-of-mass (c.m.) frame with momenta Pμ
1 =(√

S
2 , 0, 0,

√
S
2

)
and Pμ

2 =
(√

S
2 , 0, 0,−

√
S
2

)
in the

collinear approximation—that is, qi = xiPi, i = 1, 2;
ŝ = (q1 + q2)

2, t̂ = (q1 − pγ)
2, and û = (q2 − pγ)

2 are
the Mandelstam variables; |M(a(q1)b(q2) → γ(pγ)c)|2
is the squared modulus of the amplitude for the
hard parton-scattering process a+ b → γ + c; and
μ = μR = μF—we assume that the renormalization
scale is identical to the factorization scale and discuss
a specific choice of μ below.

The results of the LO calculations within the CPM
framework fall substantially short of experimental
data, and this is indicative of the need for taking into
account NLO corrections [44], but, even upon the
inclusion of the NLO contributions, the theoretical
results underestimate the experimental data [45, 46].
At same time, the standard factorization scheme
within the parton model and QCD disregards the
motion of partons within initial hadrons, assuming
that the parton momenta are collinear to the mo-
menta of colliding hadrons. The GPM approach
is a phenomenological extension of the CPM ap-
proach. Within this extension, one introduces parton
distributions depending on the intrinsic transverse
momentum (qT ). This model was first proposed
in [21] for unpolarized processes and was successfully
used later on to describe single-spin asymmetries in
inclusive production [47–49].

For a detailed description of the GPM formalism,
we refer the interested reader to [50]. Here, we give
a succinct account of the formulas necessary for our
calculations.

Within the GPM approach, the initial transverse
momenta of partons, qμ1(2)T , are included in the total

4-momentum of partons, qμ1(2), in a way that ensures

their on-shell character (q21 = q22 = 0); that is,

qμ1 = x1

√
S

2

(
1 +

q21T
x21S

,q1T , 1−
q21T
x21S

)
, (3)
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qμ2 = x2

√
S

2

(
1 +

q22T
x22S

,q2T ,−1 +
q22T
x22S

)
. (4)

According to the GPM approach, the invariant
differential cross section for direct photon production
in the process pp → γX is factorized in the form

dσGPM
dir (5)

=
∑
a,b

∫
dx1d

2q1TΦa(x1,q1T , μ
2)

×
∫

dx2d
2q2TΦb(x2,q2T , μ

2)

× dσ̂(a(q1)b(q2) → γ(pγ)c),

where a, b = q, q̄, g, while dσ̂ is given by an expression
that is similar to expression (2). After some algebra,
expression (5) can be recast into the form

dσGPM
dir

dpγTdyγ
(6)

=
1

8π

∑
a,b

∫
dx1d

2q1TΦa(x1,q1T , μ
2)

×
∫

dx2d
2q2TΦb(x2,q2T , μ

2)

× pγT
x1x2S

|M(a(q1)b(q2) → γ(pγ)c)|2 δ(ŝ + t̂+ û),

where yγ is the photon rapidity and pγT is the photon
transverse momentum.

The dependence on the intrinsic transverse mo-
mentum in the parton distribution Φa(xi,qiT ) is fac-
torized and is specified in the form of a Gaussian
distribution featuring a phenomenological parameter
〈q2T 〉; that is,

Φa(x,qT , μ
2) = fa(x, μ

2)
1

π〈q2T 〉1/2
e−q2T /〈q2T 〉. (7)

Various estimates can be found in the literature for
the numerical value of this parameter. They depend
on the experimental-data sets included in the fitting
procedure. In the most self-consistent way, the value
of this parameter was extracted in [51]. The result was
〈q2qT 〉 = 0.25 GeV2 for quarks and 〈q2gT 〉 = 1 GeV2

for gluons.
By employing these values and relying on the

GPM approach, within which we took the CTEQl1
collinear parton distributions [52], we calculated the
differential cross sections with respect to the trans-
verse momentum for direct photon production in the
PHENIX experiment reported in [53]. In order to
take into account NLO corrections, we used a phe-
nomenological К factor. The dependence of the К fac-
tor on the photon transverse momentum at the c.m.

collision energies of
√
S = 17.3, 19.4, and 63 GeV

was explored in [54]. The experimental data of the
PHENIX Collaboration from [53] could be described
within the GPM approach upon taking K = 2.9 at
the central value of the hard scale μ = pT (solid line).
This is illustrated in Fig. 1, where the uncertainty
associated with scale variations over the range of
pT /2 < μ < 2pT is represented by the region shaded
in gray.

3. TRANSVERSE SINGLE-SPIN
ASYMMETRIES IN THE GENERALIZED

PARTON MODEL

In the general form, the transverse single-spin
asymmetry is given by the expression

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓ , (8)

where the symbols ↑ and ↓ indicate opposite orien-
tations of the proton spin that are orthogonal to the
scattering plane in the c.m. frame of colliding protons.

For direct photons, we have

dσ↑ − dσ↓ = dΔσ (9)

=
∑

a,b=g,q,q̄

∫
dx1d

2q1T

∫
dx2d

2qT2

×ΔΦa/p↑(x1,q1T , μ
2)Φb/p(x2,q2T , μ

2)

× pγT
x1x2S

|M(a(q1)b(q2) → γ(pγ)c)|2 δ(ŝ + t̂+ û),

ΔΦa/p↑(x1,q1T , μ
2) (10)

≡ Φa/p↑(x1,q1T , μ
2)−Φa/p↓(x1,q1T , μ

2)

= ΔΦN
a/p↑(x1, q1T , μ

2) S · (P̂× q̂1T )

= ΔΦN
a/p↑(x1, q1T , μ

2) cosφa,

where qT = |qT |, qT = qT (cos φ, sinφ); (x1, q1T , μ2)
is the density of unpolarized partons a = q, g that
have an intrinsic transverse momentum q1T within a
transversely polarized proton p↑ whose 3-momentum
and spin vector are denoted by P and S, respec-
tively; P̂ = P/|P| and q̂T = qT /|qT | are unit vec-
tors; ΔNΦa/p↑(x1, q1T , μ

2) is the Sivers function [55];
and Φb/p(x2,q2T , μ

2) is the distribution of partons
b = q, g in an unpolarized proton. The parton b within
a polarized proton may be both a quark (an antiquark)
and a gluon; therefore, the total asymmetry associ-
ated with the Sivers function is in fact the sum of the
asymmetries related to the quark and gluon Sivers
functions: AN = Aq

N +Ag
N .

The experimental data available at the present time
permit extracting the quark Sivers function, but the
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Fig. 1. Spectra of direct photon production at
√
S = 200 GeV. The solid line corresponds to our calculations within the

GPM approach at μ = pT , the region shaded in gray reflects the uncertainty that arises upon varying μ over the range of
pT /2 < μ < 2pT , and the points represent experimental data of the PHENIX Collaboration [53].

gluon Sivers function has not yet received adequate
study. An indirect estimations of the gluon Sivers
function was performed within the GPM approach
in [56], where this function was fitted to data on the
single-spin asymmetry in neutral-pion production at
the Relativistic Heavy Ion Collider (RHIC) in the
central rapidity region. A calculation of transverse
asymmetries that arise in direct photon production
at the RHIC energies (

√
S = 200 GeV) and which

may owe their existence to the contribution of the
gluon Sivers function was performed in [57] within the
GPM approach and within its color gauge-invariant
extension.

The Sivers function admits different functional
parametrizations. Here, we make use of the paramet-
rization from the article of D’Alesio and his coau-
thors [56], who presented parameter sets for the gluon
Sivers function; that is,

ΔΦN
a/p↑(x, qT , μ

2) (11)

= 2Na(x)fa/p(x, μ
2)h(qT )

e−q2T /〈q2T 〉

π〈q2T 〉
,

Na(x) = Nax
αa(1− x)βa

(αa + βa)
αa+βa

ααa
a ββa

a

, (12)

h(qT ) =
√
2e

qT
M

e−q2T /M2
, (13)

where |Na| ≤ 1. Following [56], one can introduce the

parameter ρ =
M2

〈q2T 〉+M2
for the gluon Sivers func-

tion, whereupon expression (11) assumes the form

ΔΦN
g/p↑(x, qT , μ

2) = 2Ng(x)fa/p(x, μ
2) (14)

×
√
2e

π

√
1− ρ

ρ
qT

e−q2T /ρ〈q2T 〉

〈q2T 〉3/2
.

A saturated Sivers function for which one takes
the values of Na(x) = 1 and ρ = 2/3 is the simplest
parametrization [58], which permits estimating maxi-
mum possible asymmetries and relative contributions
of quarks and gluons. The calculations performed
with the saturated Sivers function lead to asymmetry
values ranging between 4% and 6% and exceeding
substantially existing experimental data. In the fol-
lowing, we therefore do not use this parametrization.

In the present study, we consider three versions
of the choice of parameters for the Sivers function.
The parameters of the quark Sivers function that were
extracted from a fit to the experimental data measured
by the HERMES and COMPASS Collaborations for
transverse single-spin azimuthal asymmetries in the
production of charged hadrons [59] and in processes
of semi-inclusive deep-inelastic scattering (DIS) for
transverse single-spin azimuthal asymmetries in pion
and kaon production with allowance for the u, d, and s
quark flavors [60], together with the parameters of the
gluon Sivers function that were determined from the
best fit in [56] for either parametrization of the quark
Sivers function, will be referred to as, respectively, the
SIDIS1 and SIDIS2 parameter sets. The parameters
of the quark Sivers function that are identical to those

PHYSICS OF ATOMIC NUCLEI Vol. 85 No. 6 2022



GLUON SIVERS FUNCTION 741

in the SIDIS1 set, together with the parameters of
the gluon Sivers function that were extracted in the
article of D’Alesio and his coauthors [51], will be
denoted by D2019. The values of these parameters,
together with the values of the parameter 〈q2T 〉 in
expression (7), are listed in Tables 1 and 2 for, respec-
tively, the quark and gluon parametrizations.

4. FORMALISM OF THE COLOR
GAUGE-INVARIANT EXTENSION OF THE

GENERALIZED PARTON MODEL

The quark Sivers function extracted from exper-
imental data on semi-inclusive DIS can be used to
describe asymmetries in hadron–hadron collisions
since the hypothesis of a universal character of the
dependence on the intrinsic transverse momentum
of parton distributions is adopted within the GPM
framework. This means that effects of ISI and FSI
between structure partons and soft spectator residues
of the polarized proton are disregarded in the to-
tal scattering amplitude, as is illustrated in Fig. 2a.
The ISI and FSI effects may be different in different
scattering processes: by way of example, we indi-
cate that, in semi-inclusive DIS, the quark produced
in the parton-scattering process may exchange soft
gluons with proton residues, which is FSI, while, in
the Drell–Yan process, a quark from the unpolarized
proton may exchange soft gluons with the trans-
versely polarized proton, initiating ISI. Color states
generated by these interactions may complicate sub-
stantially the color structure of the Sivers function in
proton–proton interactions since both ISI and FSI
effects are present in them [61], giving rise to the
dependence of the Sivers function on the scatter-
ing process. A GPM extension in the form of the
color gauge-invariant generalized parton model (CGI
GPM) [23–25] was proposed in order to take this
dependence into account. Within the CGI GPM
approach, the process dependence of the quark Sivers
function is considered in the one-gluon-exchange
approximation, which permits absorbing this depen-
dence in the parton cross sections, but leaves the the
Sivers function universal. The Feynman diagrams
illustrating ISI and FSI in the one-gluon approxima-
tion for photon production in p↑p → γX processes are
depicted in Figs. 2b and 2c, respectively. The modified
parton production cross sections have the same form
in terms of the Mandelstam variables as the hard
twist-3 functions of the collinear approach [23].

In the formulas given below and associated with
the CGI GPM approach, we will make use of a differ-
ent definition of the Sivers function, Φ⊥q

1T (xi, qT i, μ
2).

It is related to ΔNΦq/p↑(xi, qT i, μ
2) by the equation

ΔNΦq/p↑(x, qT , μ
2) = −qT

M
Φ⊥q
1T (x, qT , μ

2). (15)

In order to take into account the process dependence
of the quark Sivers function within the CGI GPM
approach, it is then necessary to make the following
substitution in expression (9):

Φ⊥q
1T |M(qb → γc)|2 ≡ Φ⊥q

1T

∑
i,j

AiA∗
j (16)

→ Φ⊥qb→γc
1T

∑
i,j

AiA∗
j =

Cij
I + Cij

Fc

Cij
U

Φ⊥q
1T

×
∑
i,j

AiA∗
j ≡ Φ⊥q

1T |M(qb → γc)|2CGI
.

Here, the indices run through all diagrams contribut-
ing to the parton process being considered; Cij

U is the
color factor appearing in |M(qb → γc)|2 in the un-
polarized case; and Cij

I and Cij
Fc

are the color factors
arising upon the summation of, respectively, ISI and
FSI for each of the diagrams.

Within the CGI GPM approach, the gluon Sivers
function is represented as a linear combination of two

independent and universal gluon distributions Φ⊥g(f)
1T

and Φ
⊥g(d)
1T with coefficients that are calculated for

each parton process. Two different gluon Sivers dis-
tributions correspond to two possible ways of for-
mation of color-singlet combinations in three-gluon
vertex functions via a convolution with a symmetric
(T a

bc ≡ −ifabc) or an antisymmetric (Da
bc ≡ dabc) con-

stant of the SU(3) color group; that is,

Φ⊥g
1T |M(gb → γc)|2U ≡ Φ⊥g

1T

∑
i,j

AiA∗
j (17)

→ Φ⊥gb→cd
1T

∑
i,j

AiA∗
j

≡
(
Φ
(f)⊥gb→cd
1T +Φ

(d)⊥gb→cd
1T

)∑
i,j

AiA∗
j

=
C

ij(f)
I + C

ij(f)
Fc

Cij
U

Φ⊥g
1T

∑
i,j

AiA∗
j

+
C

ij(d)
I + C

ij(d)
Fc

C
ij(d)
U

Φ⊥g
1T

∑
i,j

AiA∗
j

≡ Φ
⊥g(f)
1T |M(gb → γc)|2CGI(f)

+Φ
⊥g(d)
1T |M(gb → γc)|2CGI(d).

A detailed discussion of ISI and FSI effects, to-
gether with the illustrations of one-gluon-exchange
diagrams, as well as a complete set of formulas for
hard parton processes with color factors in the CGI
GPM approach, can be found in [23, 57]. Presented
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Table 1. Parameter sets for the quark Sivers function

Name Nu Nū Nd Nd̄ Ns Ns̄ αu αd αsea βu βd M2, (GeV/c)2 〈q2T 〉, (GeV/c)2

SIDIS1 0.32 –1.00 0.29 1.16 0.53 3.77 0.32 0.25

SIDIS2 0.35 0.04 –0.90 –0.40 –0.24 1.00 0.73 1.08 0.79 3.46 3.46 0.34 0.25

D2019 0.32 –1.00 0.29 1.16 0.53 3.77 0.32 0.25

below are only the equations that correspond to direct
photon production. Specifically, we have

|M(qg → γq)|2U (18)

= −16π2ααs

e2q
Nc

(
t̂

ŝ
+

ŝ

t̂

)
,

|M(qg → γq)|2CGI (19)

= −|M(q̄g → γq̄)|2CGI

= 16π2ααs
Nc

N2
c − 1

e2q

(
t̂

ŝ
+

ŝ

t̂

)
,

|M(qq̄ → γg)|2U (20)

= 16π2ααs
N2

c − 1

N2
c

e2q

(
û

t̂
+

t̂

û

)
,

|M(qq̄ → γg)|2CGI (21)

= −|M(q̄q → γg)|2CGI

= 16π2ααs

e2q
N2

c

(
û

t̂
+

t̂

û

)
,

|M(gq → γq)|2U (22)

= −16π2ααs

e2q
Nc

(
û

ŝ
+

ŝ

û

)
,

|M(gq → γq)|2CGI(f) (23)

= |M(gq̄ → γq̄)|2CGI(f) = −1

2
|M(gq → γq)|2U ,

|M(gq → γq)|2CGI(d) (24)

= −|M(gq̄ → γq̄)|2CGI(d) =
1

2
|M(gq → γq)|2U .

Table 2. Parameter sets for the gluon Sivers function

Name Ng αg βg ρ 〈q2T 〉, (GeV/c)2

SIDIS1 0.65 2.8 2.8 0.687 0.25

SIDIS2 0.05 0.8 1.4 0.576 0.25

D2019 0.25 0.6 0.6 0.100 1.00

5. RESULTS OF CALCULATIONS

The results obtained by experimentally measuring
single-spin asymmetries in direct photon production
at the RHIC energy of

√
S = 200 GeV in the cen-

tral pseudorapidity region of −0.35 < η < 0.35 were
recently published in [62]. In Fig. 3, the results of
our calculations performed on the basis of the GPM
approach with the SIDIS1, SIDIS2, and D2019 pa-
rameter sets are given along with the experimental
data. Figure 3 shows that, for all parameter sets
chosen in the present study, the theoretical results
in question describe the experimental data within the
errors everywhere, with the exception of one point in
the region of low transverse momenta.

Figure 4 illustrates the predictions that we ob-
tained within the GPM framework for the transverse
asymmetries generated by the gluon and quark Sivers
functions at (a)

√
S = 27 GeV and (b)

√
S = 20 GeV,

employing the SIDIS1 parameter set. These results
are given as a function of the Feynman variable xF
for the photon transverse momenta in the range of
4 < pT < 6 GeV. The solid and dashed lines repre-
sent the contributions of, respectively, the quark and
gluon Sivers functions at the central choice of the
hard scale, μ = pT . In the figures, the dependence
of the predictions on this scale is shown by the dot-
ted lines representing the boundaries of the corridor
pT /2 < μ = 2pT . Both for the gluon Sivers function
and for the quark Sivers function, the uncertainties
associated with the choice of value for the hard scale
are obviously insignificant.

The dependences presented here show that, in the
region of xF < −0.2, the contribution of the gluon
Sivers function is the most distinct and increases
monotonically as xF decreases. By studying the re-
gion of xF � −0.5, we can therefore estimate directly
the gluon Sivers function, but the resulting estimate
would lie within the experimentally accessible region
of xF exclusively.

In Fig. 5, the above dependences are shown for the
SIDIS2 and D2019 sets of parameters of the Sivers
function. The total contributions of the quark and
gluon Sivers functions are given in Fig. 6 for various
choices of parameters of the Sivers function.

We can see that the largest asymmetry values
are predicted upon choosing the SIDIS1 parameter
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(b) (c)

Fig. 2. Feynman diagrams corresponding to the process p↑p → γX within the (a) GPM approach, (b) CGI GPM approach
for the ISI case, and (c) CGI GPM approach for the FSI case.
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Fig. 3. Single-spin asymmetries in direct photon production at
√
S = 200 GeV. The solid, dotted, and dashed lines represent

the results of our calculations based on the GPM approach and performed with, respectively, the SIDIS1, SIDIS2, and D2019
parameter sets, while the points on display stand for experimental data of the PHENIX Collaboration [62].
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Fig. 4. Dependences of the contributions of the gluon and quark Sivers functions on xF for 4 < pT < 6 GeV at (a)
√
S =

27 GeV and (b)
√
S = 20 GeV for the SIDIS1 parameter set [59].

set. The smallest asymmetry values are predicted
in the case of choosing the SIDIS2 parameter set.
At the absolute maximum, either contribution of the
quark and gluon Sivers functions does not exceed

1.5%. The absolute values of the contribution of the
gluon Sivers function decrease with increasing c.m.
energy, but the problem of separation of background
processes from signal ones complicates strongly the
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Fig. 5. Dependences of the contributions of the gluon and quark Sivers functions on xF for 4 < pT < 6 GeV at (a)
√
S =

27 GeV and (b)
√
S = 20 GeV for the SIDIS2 [60] and D2019 [51] parameter sets.
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Fig. 6. Dependences of the total asymmetries on xF for 4 < pT < 6 GeV at (a)
√
S = 27 GeV and (b)

√
S = 20 GeV for

various choices of parameters for the Sivers function.

analysis of experimental data at relatively low energies
of

√
S < 20 GeV. At the c.m. collisions energies

of
√
S = 20 GeV and

√
S = 27 GeV, the GPM ap-

proach with the gluon Sivers function parameter-
ized by employing the SIDIS1 set predicts 5% to
10% asymmetries, which admit experimental obser-
vations.

6. CGI GPR RESULTS

In Figs. 7, 8, and 9, the xF dependences of the
contributions associated with the d- and f-gluon
Sivers functions and the quark Sivers function are
given at (a)

√
S = 27 GeV and (b)

√
S = 20 GeV

for, respectively, the SIDIS1, SIDIS2, and D2019
parameter sets. Since the d- and f-gluon Sivers
functions are independent, their contributions can
either form a sum or cancel each other; that is, the
predicted asymmetry values, which one can observe
experimentally, fall within the range from zero to the
doubled absolute value of the contribution of the d-
gluon (f-gluon) Sivers function. The quark Sivers

function–induced asymmetries the within the CGI
GPM approach are identical in magnitude to their
counterparts within the GPM approach generalized
parton model but are opposite to them in sign.

7. CONCLUSIONS

We have calculated transverse single-spin asym-
metries in the production of direct photons in p↑p
collisions at the NICA energies of

√
S = 20 GeV and√

S = 27 GeV, relying on the approach developed
within the GPM framework on the basis of the
hypothesis that transverse-momentum-dependent
quark and gluon Sivers functions exist both in this
approach and in its color gauge-invariant exten-
sion. Within the GPM approach, we have suc-
cessfully described the existing experimental data
of the PHENIX Collaboration [53] on direct photon
production, thereby confirming the viability of the
model used.

We have determined the hierarchy of the contri-
butions of the gluon and quark Sivers functions to
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Fig. 7. Dependences of the contributions of the gluon and quark Sivers functions on xF for 4 < pT < 6 GeV at (a) for√
S = 27 GeV and (b)

√
S = 20 GeV for the SIDIS1 parameter set [59] in the CGI GPM approach.
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Fig. 8. As in Fig. 7, but for the SIDIS2 parameter set [60].
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Fig. 9. As in Fig. 7, but for the D2019 parameter set [51].

the expected asymmetries and have singled out the
region of xF < −0.4 as that which is kinematically
appropriate for extracting the gluon Sivers function
in the case of implementation of a scenario that is
favorable for its observation. We have considered
three versions of parametrization of the Sivers func-
tions and, among them, have singled out the SIDIS1
parameter set [59] as the most optimistic scenario for

the observation of single-spin asymmetries induced
by the gluon Sivers function. By employing this
parametrization within both approaches—the GPM
and CGI GPM ones—we have predicted the pos-
sibility of observing at a level of 10% down to 5%
the gluon Sivers function–induced transverse asym-
metries over the region of negative xF values that is
kinematically accessible to measurements and at the
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NICA energies of
√
S = 20 GeV and

√
S = 27 GeV,

which are the most promising for their observation.
Within the CGI GPM approach, this estimate is valid
in the case where the contributions of the d- and f-
gluon Sivers functions are of the same sign. As was
earlier indicated in [57], we cannot rule out none of
the above scenarios of the appearance of transverse
asymmetries.
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