Genetic Algorithm for determination of event collision time and particle identification by Time-Of-Flight at SPD NICA

Semyon Yurchenko

Saint Petersburg State University
sem2600@mail.ru

November 23, 2022

Task and initial conditions

Using information about particles trajectories and hits from TOF detector determine time of *pp*-collision.

- In this work only tracks with momentum below 500 MeV will not be considered.
- **2** Resolution of TOF detector $\sigma_t = 70 \ ps$.
- **1** Momentum resolution: $\frac{\sigma_p}{p} = 2\%$
- TOF radius is 1 m and length of 3.772 m.

Plan of simulation

- **9** Get tracks of charged particles with momentum over 500 MeV from Pythia8 events with $\sqrt{s} = 27$ GeV.
- 2 Calculate intersection point with TOF detector(t_i).
- **3** Calculate arc length of trajectory(L_i).
- Smear t_i with $N(t_i, 70 ps)$ and p_i with $N(p_i, 0.02 \cdot p_i)$.
- **1** Using information about arc lengths of trajectories, TOF hits and particle momentum determine time of pp-collision(t_0).

Plan of simulation

- **9** Get tracks of charged particles with momentum over 500 MeV from Pythia8 events with $\sqrt{s} = 27$ GeV.
- 2 Calculate intersection point with TOF detector(t_i).
- **3** Calculate arc length of trajectory(L_i).
- Smear t_i with $N(t_i, 70 ps)$ and p_i with $N(p_i, 0.02 \cdot p_i)$.
- **1** Using information about arc lengths of trajectories, TOF hits and particle momentum determine time of pp-collision(t_0).

Brute force

How brute force works:

① Choose particles types to make tof hypotheses $\rightarrow [\pi^{\pm}, K^{\pm}, p^{\pm}]$.

$$tof_{ik} = \frac{L_i}{c} \sqrt{1 + \frac{m_k^2}{p_i^2}} \tag{1}$$

- For every event check all tracks hypotheses combinations 3^N variants.
- **3** On every step calculate t_0 and χ^2 and find χ^2_{min} .

$$\chi^{2} = \sum_{i}^{N} \frac{(t_{0} + tof_{ik} - t_{i})^{2}}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}, \quad t_{0} = \frac{1}{\omega} \sum_{i}^{N} \frac{t_{i} - tof_{ik}}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}, \quad \omega = \sum_{i}^{N} \frac{1}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}$$
(2)

1 Time complexity $O(N \cdot 3^N)$.

Brute force

How brute force works:

① Choose particles types to make tof hypotheses $\rightarrow [\pi^{\pm}, K^{\pm}, p^{\pm}]$.

$$tof_{ik} = \frac{L_i}{c} \sqrt{1 + \frac{m_k^2}{p_i^2}} \tag{1}$$

- For every event check all tracks hypotheses combinations 3^N variants.
- **③** On every step calculate t_0 and χ^2 and find χ^2_{min} .

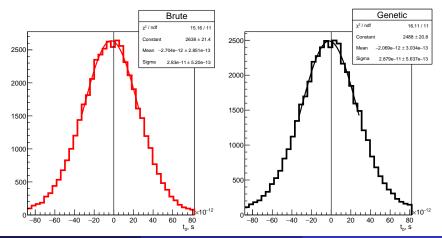
$$\chi^{2} = \sum_{i}^{N} \frac{(t_{0} + tof_{ik} - t_{i})^{2}}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}, \quad t_{0} = \frac{1}{\omega} \sum_{i}^{N} \frac{t_{i} - tof_{ik}}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}, \quad \omega = \sum_{i}^{N} \frac{1}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}$$
(2)

• Time complexity $O(N \cdot 3^N)$ - very slow!!!

Genetic algorithm

How genetic algorithm works:

- **①** Create population of random candidate solutions $v([m_i]_k)$.
- ② Create mutant vector from random candidates in population(DE-inspired):

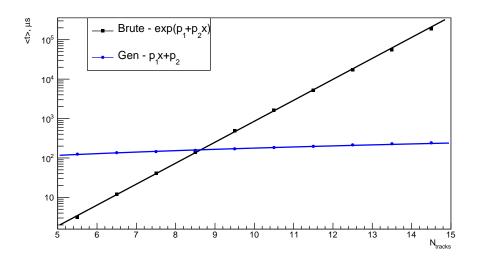

$$v_{mut} = v_r + v_p - v_q \tag{3}$$

- **3** Check if $\chi^2_{mut} < \chi^2_r$ then replace v_r with v_{mut} . If not, population remains unchanged **Darwinian selection**.
- Repeat
- $\textbf{ § After some number of steps stop and choose } \chi^2_{\textit{min}} \text{ as an answer.}$
- Time complexity $O(N \cdot N_{population} \cdot N_{steps})$, 800 < N_{steps} < 1000.

Genetic algorithm vs Brute force

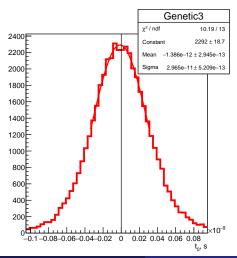
- Brute force gives solution with minimal χ^2 , but very slowly.
- Genetic algorithm has less accuracy, but much faster.

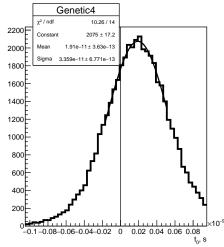
Comparison of 2 algorithms was done on events with number of tracks 4 < N < 15.

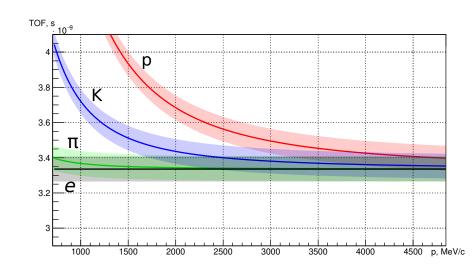

Genetic algorithm vs Brute force

- **9** Brute Force resolution of t_0 is 28 ps and Genetic Algorithm is 29 ps.
- PID event efficiency for Brute Force is 66.7% and for Genetic algorithm it is 63.3%.
- PID track efficiency for Brute Force is 97.2% and for Genetic algorithm is 96.8%.

PID event efficiency - percentage of events where all tracks were guessed correctly.


PID track efficiency - percentage of tracks that were guessed correctly.


Time complexity


Different hypotheses

Genetic3 hypotheses is $[\pi^{\pm}, K^{\pm}, p^{\pm}]$ Genetic4 hypotheses is $[e^{\pm}, \pi^{\pm}, K^{\pm}, p^{\pm}]$

TOFs

Particle Identification

Some possible strategies:

- Take particles types from χ^2 minimum,
- Bayesian approach,
- N-sigma criteria.

In 2 and 3 strategies we exclude particle from determination of t_0 to avoid correlations.

Bayesian approach	N-sigma criteria
$P(H_i \vec{S}) = \frac{P(\vec{S} H_i)C(H_i)}{\sum_{k=\pi,K,p}P(\vec{S} H_k)C(H_k)}$ $P(S H_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{1}{2}n_{\sigma_i}^2\right)$	$n_{\sigma_k^i} = rac{S_i - \hat{S}_i(m_k)}{\sigma_k^i}$
$P(S H_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{1}{2}n_{\sigma_i}^2\right)$	If $n_{sigma} < 3$ for certain type,
Probability of being particle	we associate this type with particle
of certain type	ightarrowmore than 1 type

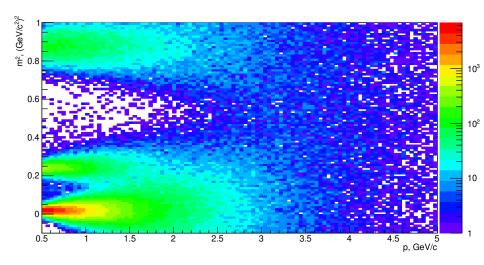
https://indico.jinr.ru/event/2788/contributions/15415/attachments/11871/19723/26.01.2022_Ivanov.A.V.pdf

Bayesian approach

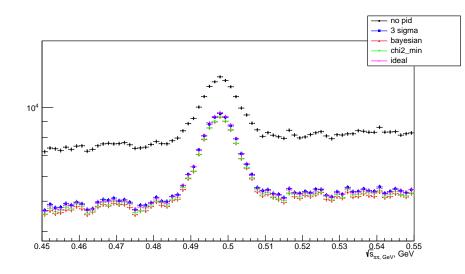
Bayes formula:

$$P(H_i|\vec{S}) = \frac{P(\vec{S}|H_i)C(H_i)}{\sum_{k=\pi,K,p} P(\vec{S}|H_k)C(H_k)}$$
(4)

 $C(H_i)$ -prior probability, $P(H_i|\vec{S})$ - posterior probability, which is calculated iterativly. On first step $C(H_i)$ are chosen flat.

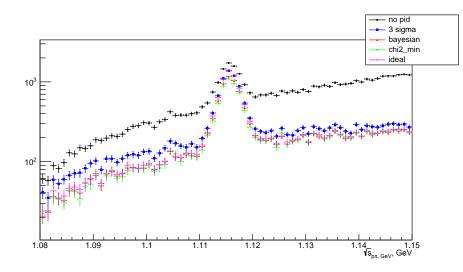

Detector signal:

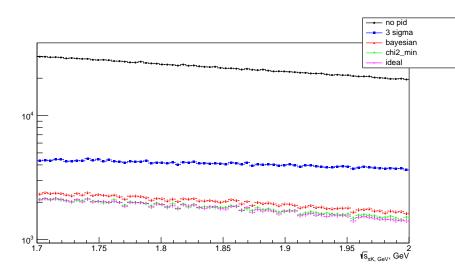
$$P(S|H_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{1}{2}n_{\sigma_i}^2\right)$$
 (5)


In case of multiple signal (i.e dE/dx + TOF):

$$P(S|H_i) = \prod_{k=dE/dx, TOF} P(S|H_i)_k$$
 (6)

PID masses calculated with exclusion


Signals: K_s


Signals: ϕ

Signals: A

Signals: D^0

Summary

- 1 In events with low multiplicity (4 < N < 15) Brute Force on average spend 5 ms per event, and Genetic algorithm 0.160 ms.
- Quantime grows slowly as function of multiplicity for Genetic algorithm.
- **3** Brute Force resolution of t_0 is 28 ps and Genetic Algorithm is 29 ps.

Outlook

- Ompare DE-inspired algorithm with other types of Genetic algorithms.
- Optimise Genetic algorithm to decrease run time.
- **1** Include t_0 determination algorithm in SPD ROOT.
- PID procedure needs futher studies.

Thank you for your attention!