### Simulation of silicon detectors of the MiniSPD setup N.Barlykov, V.Dudin(JINR)



#### MiniSPD stand



#### Structure of MiniSPD



### **Two-sided Si-plates**

#### **Top** module:

- 1<sup>st</sup> part U/X (coordinates)
- 2<sup>nd</sup> part U/X

#### Middle module:

- 3<sup>rd</sup> X/U, 4<sup>th</sup> Y/U
- $5^{th} U/X$ ,  $6^{th} X/U$





#### MIDDLE

TOP

#### Bottom module:

- 7<sup>th</sup> part U/X
- 8<sup>th</sup> part X/U



BOTTOM

#### Geometry of Silicon plates

Thickness of every single Si-plate – 300 microns Number of strips – 640 Strip's size – 0,095 mm Measured coordinates  $- X \& U (2,5^{\circ})$ Strip numeration: Numeration of strips from left to right: X1, X2, X4, X5, X7 and U1, U2, U3, U4, U5, U7 From right to left: X3, X6, X8 and U6, U8.

## Geometry of Silicon plates

|          | X, mm  | Y, mm  | Z, mm | Size, mm |
|----------|--------|--------|-------|----------|
|          |        |        |       |          |
| Sx1, Su1 | -28,55 | 0      | 35,0  | 63 x 126 |
| Sx2, Su2 | 31,55  | 0      | 50,3  | 63 x 126 |
| Sx3, Su3 | -32,55 | -27,55 | 387,8 | 63 x 63  |
| Sx4, Su4 | 27,55  | -32.55 | 395,1 | 63 x 63  |
| Sx5, Su5 | -27,55 | 32,55  | 395,1 | 63 x 63  |
| Sx6, Su6 | 32,55  | 27,55  | 387,8 | 63 x 63  |
| Sx7, Su7 | -28,55 | 0      | 893,5 | 63 x 126 |
| Sx8, Su8 | 31,55  | 0      | 886,2 | 63 x 126 |

Table 1. Detector coordinates

#### Inclusion in basic packet of StripStepping.cc for simulation of triggering of strips

- Add StripStepping.cc to SteppingAction.cc
- In StripStepping for every module and part:

1. Connect the triggered strip number with X-coordinate, define U-coordinate for the same plane and the strip number on U-plate and its E\_dep (energy deposition). The counter works.

2. Sorting of triggered strip number in increasing order for elimination of repeating numbers (X and U plates).

3. Border accounting. (Complicated programme)

#### Direction and position of initial muons

- Polar angle distribution by cosine
- X(Y) R(0, r) (uniform distribution)



#### Scheme of MiniSPD



#### Geant4. Theta = 50 degrees

 $-25^{\circ} \leq \theta \leq 25^{\circ}$ 



## Strip number distributions for X1, X2, U1, U2 plates





X1 - good work

X2 ~ 100 channels make enhanced noise





#### good work

MC

DATA

## Strip number distributions for X3, X4, U3, U4 plates



MC

DATA

## Strip number distributions for X5, X6, U5, U6 plates





X5 and X6 - good work





#### DATA

MC

U5 ~1/4 channels U6 - almost good make noise work

## Strip number distributions for X7, X8, U7, U8 plates



channels

channels

MC

DATA

# Energy deposition in a one strip at the X1-side for simulation events (left) and experimental data (right).



## Possible combinations of Si-modules for tracks passing through MiniSPD setup

|    | Nfile | Comb. | Ntracks |                 |     |                   |
|----|-------|-------|---------|-----------------|-----|-------------------|
|    | 268   | LLL   | 5602    |                 | \2  | 1                 |
| 1  | 157   | RRR   | 4378    | Vertical tracks |     |                   |
|    | 248   | LLL   | 3558    |                 | 4   | 5                 |
|    | 137   | RRR   | 2187    |                 |     |                   |
|    | 158   | RLL   | 3428    |                 |     |                   |
| 11 | 267   | LLR   | 2396    |                 | 6   | 3                 |
|    | 247   | LLR   | 2105    |                 | Ŭ \ | U U               |
|    | 138   | RRL   | 378     | Ohlimus trachs  | \   |                   |
|    | 257   | LRR   | 2392    | Oblique tracks  |     |                   |
|    | 148   | RLL   | 1550    | K               |     |                   |
|    | 168   | RLL   | 1037    |                 |     | N I               |
|    | 237   | LRR   | 3       |                 |     | \                 |
|    | 258   | LRL   | 88      |                 |     | $\langle \rangle$ |
| IV | 147   | RLR   | 3       |                 |     |                   |
|    | 167   | RLR   | 0       | Noise           | 8   |                   |
|    | 238   | LRL   | 0       |                 |     | ۱.                |

# Alignment is minimization of residuals of functional: $F = \sum_{events} \sum_{tracks} \sum_{hits} \left( \frac{d_i^2}{\sigma_{d_i}^2} \right)$ $d_i = u_{fit} - u_{mes}$

Large number of parameters: track parameters (4 \* number of tracks) and shifts (numbers of detectors), number of hits >> parameters.

 $u_{fit} \rightarrow u_j(z_i) = (x_0 + t_x z_i) \cos(\alpha_i) + (y_0 + t_y z_i) \sin(\alpha_i) + \Delta u_i$ 

#### x2 and residual distributions of track passing through part 1,3 and 7 for X3(yellow) and U3(blue) before alignment



#### x2 and residual distributions of track passing through part 1,3 and 7 for X3(yellow) and U3(blue) after alignment



#### Conclusion

- Monte Carlo simulation of two-sided silicon plates of MiniSPD stand is carried out for two cases: with and without taking into account operation of the scintillator triggers. Comparison Monte Carlo simulation with experimental data allows to estimate the lower threshold on energy for a single strip operation. It is about 55 keV.
- Work of all parts (1-8) and their sides (X and U) of MiniSPD Si-detectors was analyzed and compared with Monte Carlo simulation. Noisy and dead channels are seen directly from the distributions according to the numbers of triggered strips. The alignment task is solved for parts of the middle module. The distributions on residuals of its parts and χ2 on tracks are obtained.