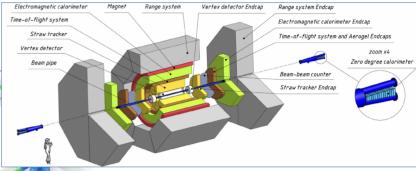

SPD experiment at JINR


Igor Denisenko (on behalf of the SPD Collaboration) iden@jinr.ru

42nd International Symposium on Physics in Collision 10-13 October 2023

Nuclotron-based **I**on **C**ollider f**A**cility (NICA)

Spin Physics Detector (SPD)

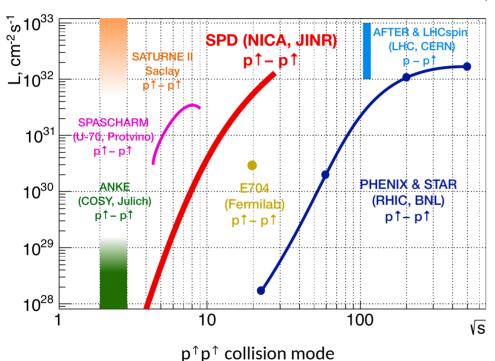
E-cooling

Polarized beams

 $\mathbf{p} \uparrow \mathbf{p} \uparrow$ at $\sqrt{s_{pp}} \le 27 \text{ GeV}$, $\mathbf{L}_{av} \approx 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

d↑**d**↑ at √s_{NN} ≤ **13.5 GeV**

Mag p↑d↑ at $\sqrt{s_{NN}} \le 19$ GeV


longitudinal and transverse polarization (UU,

LL, TT, UT, LT) > 70%

Operation: after 2028

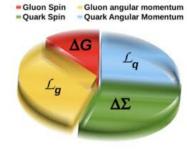
NICA and other facilities

SPD CDR (arXiv:2102.00442)

Experimental	SPD	RHIC [29]	EIC [26]	AFTER	SpinLHC
facility	@NICA [30]			@LHC [24]	[25]
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	p^{\uparrow} - p^{\uparrow}	p^{\uparrow} - p^{\uparrow}	e^{\uparrow} - p^{\uparrow} , d^{\uparrow} , 3 He $^{\uparrow}$	p - p^{\uparrow} , d^{\uparrow}	$p ext{-}p^{\uparrow}$
& polarization	d^{\uparrow} - d^{\uparrow}				
	p^{\uparrow} - d , p - d^{\uparrow}				
Center-of-mass	≤27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (ep)	115	115
energy $\sqrt{s_{NN}}$, GeV	\leq 13.5 (<i>d</i> - <i>d</i>)	500			
	\leq 19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	~0.1 (<i>d</i> - <i>d</i>)			$\sim 10 \ (p-p)$	
Physics run	>2025	running	>2030	>2025	>2025

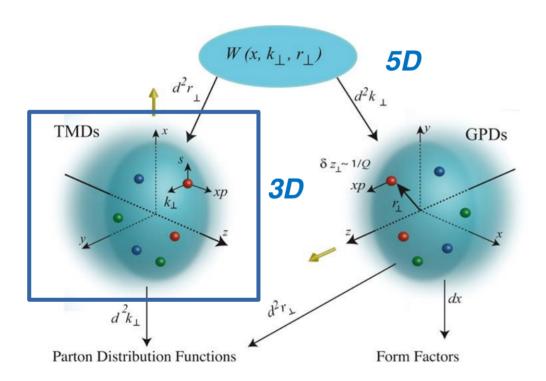

NICA is unique for double polarized $d^{\uparrow}d^{\uparrow}$ collisions at these energies.

Nucleon structure


Hadron structure is one of the keys to understand bound states in QCD.

Nucleon tomography aims to understand how hadrons are build in terms of elementary degrees of freedom in QCD.

- How quarks and gluons, and their spins are distributed in a nucleon in transverse positional space and transverse momentum space?
- How nucleon spin emerges from spin and internal motion of valence and see quarks and gluons?


Our understanding of nucleon structure

Spin decomposition of proton

Figure credit: Physics Reports 911, 2021, 1

Nucleon tomography

- **Significant progress** on **quark TMD**s over the last decades (for details see e.g. TMD Handbook, arxiv:2304.03302).
- Our knowledge on gluon TMD remains rather scarce.

gluon pol.

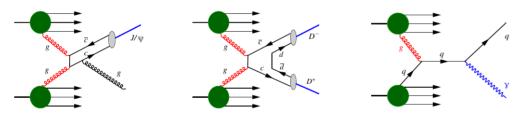

Leading twist gluon TMD PDFs (two times more due to gauge links)

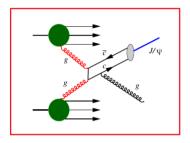
Figure credit: J.-P. Cheng

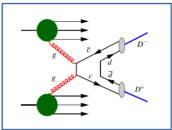
SPD experiment

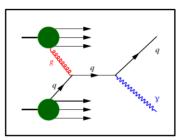
Main goal of the experiment - spin-dependent gluon structure of proton and deuteron.

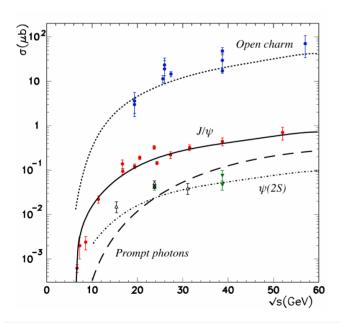
• Three probes of gluon structure chosen in this energy range:

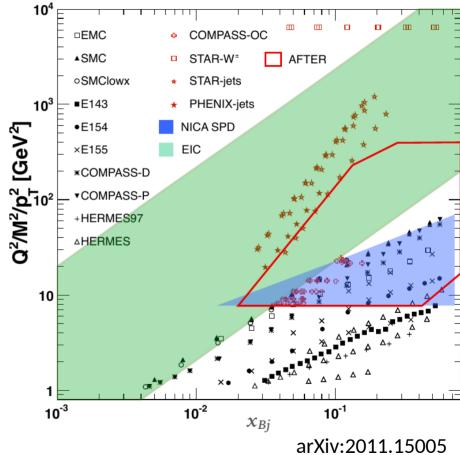
- Measurements at SPD should help to improve our understanding of QCD and resolve spin and mass crises.
- Many other aspects of QCD to be studied in such collisions.


gluon pol.


	U	circular	linear
U	f_1^g		$h_1^{\perp g}$
L		g_1^g	$h_{1L}^{\perp g}$
T	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, h_{1T}^{\perp g}$

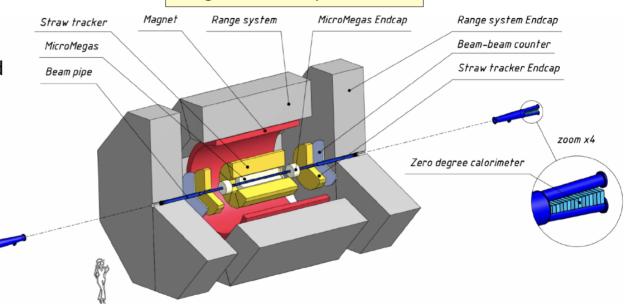

Leading twist gluon TMD PDFs (two times more due to gauge links)


nucleon pol.


SPD kinematic coverage

SPD initial stage

SPD TDR can be found at http://spd.jinr.ru/spd-cdr/


Magnetic field up to 1.2 T

- Polarized and unpolarized phenomena at low energies (3.4 GeV < √s_{NN} < 10 GeV) and reduced luminosity
- p-p, d-d, and ion collisions (up to Ca)
- Simplified detector set-up
- Up to 2 years of data taking

Range System muon identification and coarse hadron calorimetry

Straw tracker:

- $\sigma \sim 150 \, \mu m$
- $\sigma(dE/dx) = 8.5 \%$

Micromegas central tracker:

σ ~ 150 μm

BBC and **ZDC** for online polarimetry

SPD initial stage

ISSN 1063-7796, Physics of Particles and Nuclei, 2021, Vol. 52, No. 6, pp. 1044-1119. © Pleiades Publishing, Ltd., 2021.

Physical program:

- spin effects in p-p, p-d, and d-d elastic scattering
- spin effects in hyperon production
- multiquark correlations (SRC)
- large pT hadron production to study diquark structure of proton
- dibaryon resonances
- hypernuclei
- physics of light and intermediate nuclei collisions
- open charm and charmonia production near threshold
- antiproton production measurements for astrophysics and BSM search

• ...

Possible Studies at the First Stage of the NICA Collider Operation with Polarized and Unpolarized Proton and Deuteron Beams

```
V. V. Abramov<sup>a</sup>, A. Aleshko<sup>b</sup>, V. A. Baskov<sup>c</sup>, E. Boos<sup>b</sup>, V. Bunichev<sup>b</sup>, O. D. Dalkarov<sup>c</sup>, R. El-Kholy<sup>d</sup>,
A. Galoyan<sup>e</sup>, A. V. Guskov<sup>f</sup>, V. T. Kim<sup>g, h</sup>, E. Kokoulina<sup>e, i</sup>, I. A. Koop<sup>k, l, m</sup>, B. F. Kostenko<sup>m</sup>,
A. D. Kovalenko<sup>e, †</sup>, V. P. Ladygin<sup>e</sup>, A. B. Larionov<sup>o, n</sup>, A. I. L'vov<sup>c</sup>, A. I. Milstein<sup>i, k</sup>, V. A. Nikitin<sup>e</sup>,
N. N. Nikolaev<sup>p, z</sup>, A. S. Popov<sup>j</sup>, V. V. Polyanskiy<sup>c</sup>, J.-M. Richard<sup>q</sup>, S. G. Salnikov<sup>j</sup>, A. A. Shavrin<sup>r</sup>,
P. Yu. Shatunov<sup>j, k</sup>, Yu. M. Shatunov<sup>j, k</sup>, O. V. Selyugin<sup>n</sup>, M. Strikman<sup>s</sup>, E. Tomasi-Gustafsson<sup>t</sup>,
V. V. Uzhinsky<sup>m</sup>, Yu. N. Uzikov<sup>f, u, v, *</sup>, Qian Wang<sup>w</sup>, Qiang Zhao<sup>x, y</sup>, and A. V. Zelenov<sup>g</sup>

<sup>a</sup> NRC "Kurchatov Institute"—IHEP, Protvino, Moscow oblast, 142281 Russia

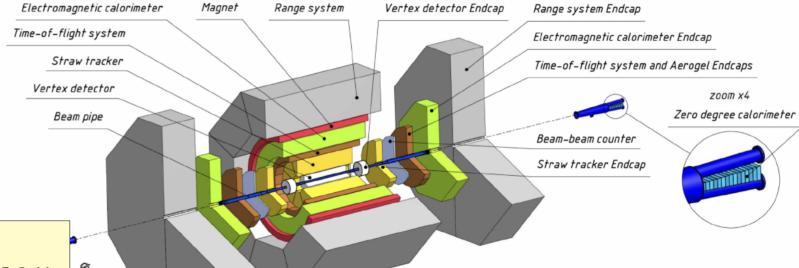
<sup>b</sup> Skobeltsyn Institute of Nuclear Physics, MSU, Moscow, 119991 Russia

<sup>c</sup> Lebedev Physical Institute, Moscow, 119991 Russia

<sup>d</sup> Astronomy Department, Faculty of Science, Cairo University, Giza, 12613 Egypt

<sup>e</sup> Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research,

Dubna, Moscow oblast, 141980 Russia
```


Retersburg Nuclear Physics Institute, NRC KI, Gatchina, Russia
 St. Petersburg Polytechnic University, St. Peterburg, Russia
 Sukhoi State Technical University of Gomel, Gomel, 246746 Belarus
 Rudkar Institute of Nuclear Physics of SR RAS, Novocibirsk, 630000 Russia

Physics of Particles and Nuclei 52, 1044 (2021) arXiv:2102.08477

SPD final layout

SPD TDR can be found at http://spd.jinr.ru/spd-cdr/

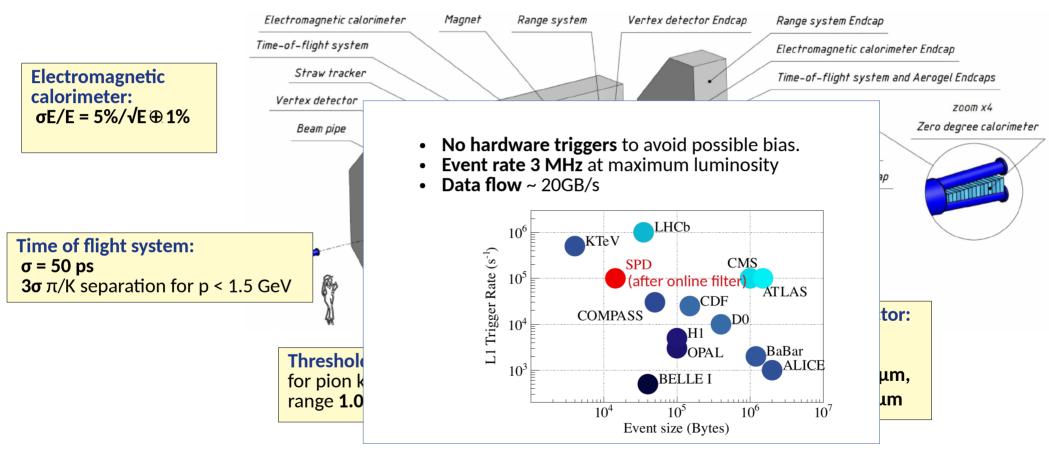
Electromagnetic calorimeter: σE/E = 5%/√E⊕1%

Time of flight system:

 σ = 50 ps

3σ π/K separation for p < 1.5 GeV

Threshold aerogel counters in


endcaps for pion kaon separation in the range 1.0 GeV < p < 2.5 GeV Silicon vertex detector:

• MAPS (4 layers): $\sigma = 10 \mu m$

DSSD (3 layers): $\sigma_{\varphi} = 27.4 \, \mu \text{m},$ $\sigma_{z} = 81.3 \, \mu \text{m}$

SPD final layout

SPD TDR can be found at http://spd.jinr.ru/spd-cdr/

SPD 2-nd stage

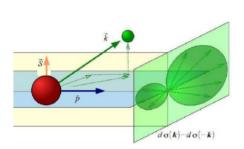
Physical program:

- unpolarized and polarized proton and deuteron structure:
 - gluon helicty
 - gluon TMDs (Sivers and Boer-Mulders)
 - gluon transversity and tensor polarized gluon distribution in deuteron
 - unpolarized proton and deuteron gluon PDF at high x
 - non-nucleonic degrees of freedom in deuteron...
- tests of QCD factorization
- charmonia production mechanisms

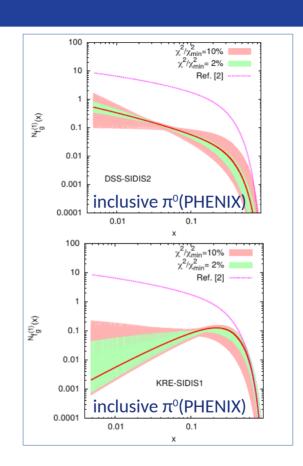
Progress in Particle and Nuclear Physics

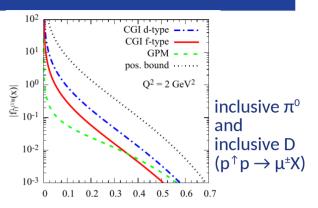
Volume 119, July 2021, 103858

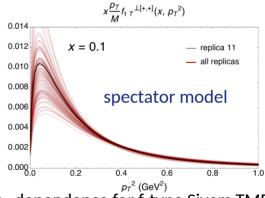
Review


On the physics potential to study the gluon content of proton and deuteron at NICA SPD

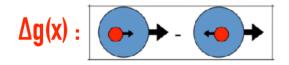
A. Arbuzov a, A. Bacchetta b, c, M. Butenschoen d, F.G. Celiberto b, c, e, f, U. D'Alesio g, h, M. Deka a, I. Denisenko ^a, M.G. Echevarria ⁱ, A. Efremov ^a, N.Ya. Ivanov ^{a, j}, A. Guskov ^{a, k} $\stackrel{\boxtimes}{\sim}$ $\stackrel{\boxtimes}{\sim}$, A. Karpishkov ^{l,} ^a, Ya. Klopot ^{a, m}, B.A. Kniehl ^d, A. Kotzinian ^{j, o}, S. Kumano ^p, J.P. Lansberg ^q, Keh-Fei Liu ^r ... O. Teryaev a


Construction site

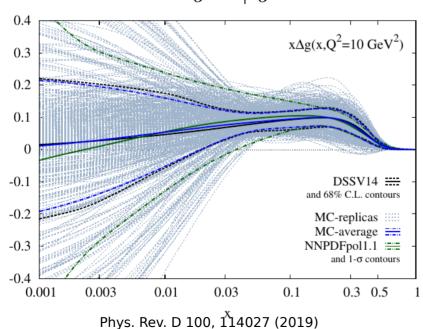

Gluon Sivers function

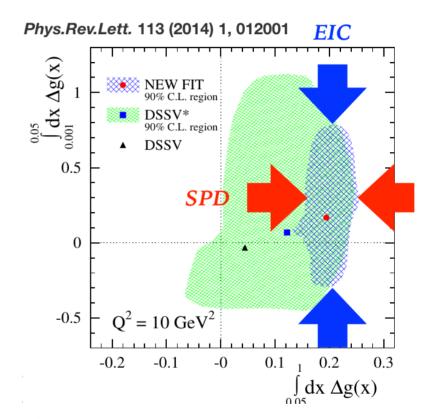

- GSF correlation between transverse spin and gluon k₊
- Probed by TSSA $\sigma(\phi) \propto 1 + P \cdot A_N \sin(\phi_{\rm pol} \phi)$
- Poorly known, extracted in GPM, CGI-GPM and very recently TMD approaches (spectator model)

First kT moments for GSF, GPM (JHEP09(2015)119))



Maximized first kT moments for GSF, CGI-GPM (PRD99, 036013 (2019))



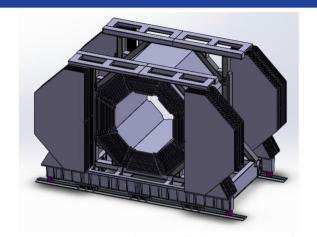

p_T-dependence for f-type Sivers TMD in the **spectator model**, Bacchetta, Celiberto, Radici, 2022

Gluon helicity distribution

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$

Other extractions: LSS15, JAM17

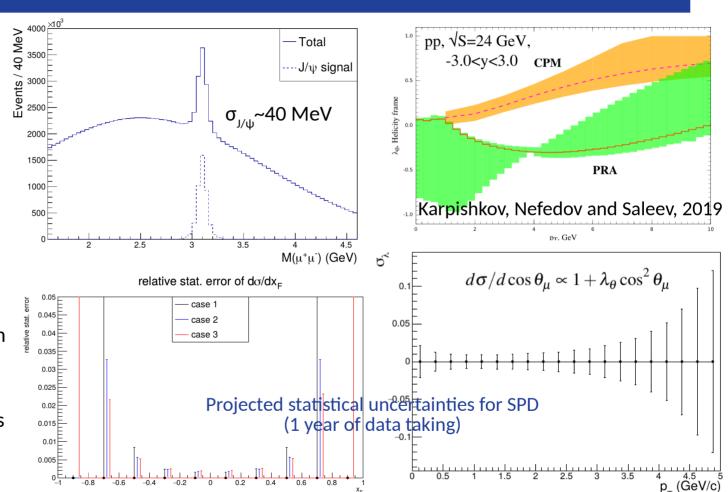
Charmonia production as a probe of gluon TMD PDFs

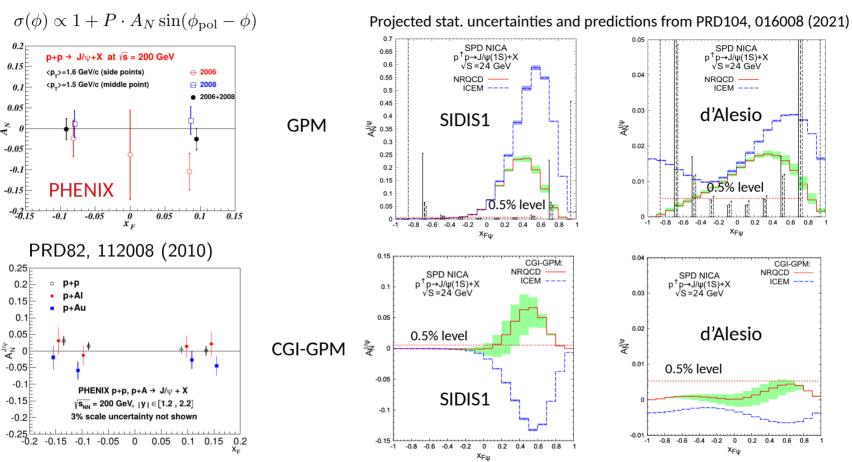

Charmonia production

- dominated by gluon-gluon fusion
- high cross-section
- J/ ψ can be easily reconstructed from the $\mu^+\mu^-$ decay, $\psi(2S)$ and χ_- can be reconstructed based on this decay
- hadronization of $c\bar{c}$ pair is not well understood theoretically:
 - (Improved) Color Evaporation Model
 - CSM
 - NRQCD
- TMD factorization is not always possible
- η_c might be the best probe, but its observation is challenging experimentally
- the J/ψ signal is "contaminated" by feed-down contributions

Charmonia production at SPD

- High statistics: 12 million inclusive J/ψ(→μ⁺μ⁻) events per year
- Wide kinematic coverage
- Ability to measure also production properties of $\psi(2S)$, χ_{c1} and χ_{c2}
- Strategy is to obtain all possible measurements in the wide kinematic range
- Constrain both theoretical approaches and PDFs
- Our p_T are mostly below M_{J/ψ}
- NRQCD LDME → shape functions (Echevarria, 2019)

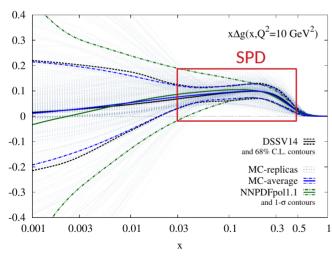

Inclusive J/ψ measurements


- Reconstruction efficiency: ~40%
- Statistics: ~ 4.5–5.0 M (selected events) per year
- Large background due to pion decays and muon misidentification in RS

Observables:

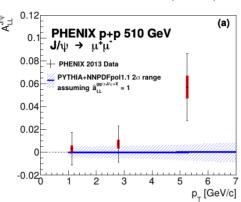
- cross-section, p_T-, x_F-dependencies
- polarization
- asymmetries

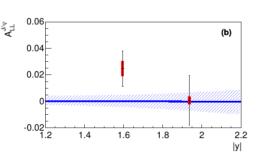
A_N for inclusive J/ ψ production


Here and in the following P = 0.7 and is assumed constant during the run.

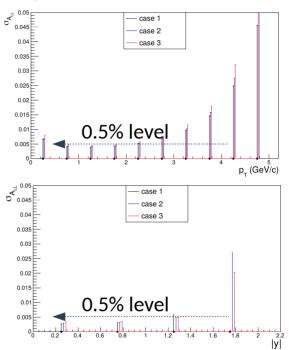
18

PRD98, 012006 (2018)


A_{II} for inclusive J/ψ production

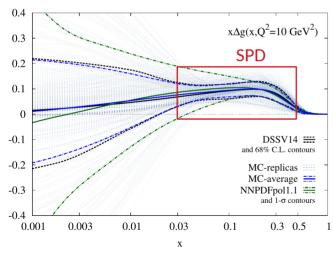

$$A_{LL}^{J/\psi} = \frac{\Delta\sigma}{\sigma} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$
$$A_{LL}^{J/\psi} \approx \frac{\Delta g(x_1)}{g(x_1)} \otimes \frac{\Delta g(x_2)}{g(x_2)} \otimes \hat{a}_{LL}^{gg \to J/\psi + X}$$

PRD100 114027 (2019)


PRD94 112008 (2016)

 $x_1 \sim 5x10^{-2}$ $x_2 \sim 2x10^{-3}$

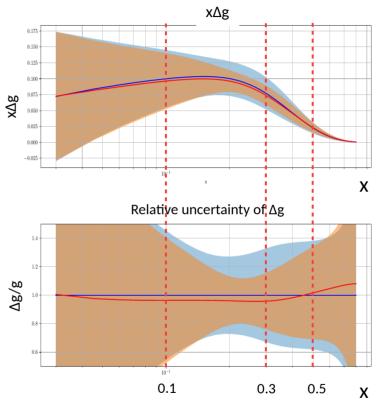
Projected statistical uncertainties for SPD



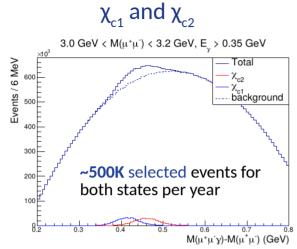
- |y|<2 is covered
- At SPD both $\Delta g(x_1)$ and $\Delta g(x_2)$ are expected to be close to the maximum
- A measurable A_{LL} of the order of 1-10% can be expected

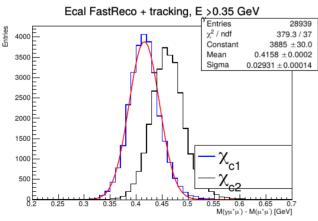
A₁₁ for inclusive J/ψ production (impact of SPD measurements)

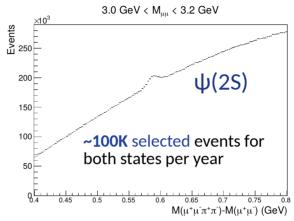
$$A_{LL}^{J/\psi} = \frac{\Delta \sigma}{\sigma} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$


$$A_{LL}^{J/\psi} pprox rac{\Delta g(x_1)}{g(x_1)} \otimes rac{\Delta g(x_2)}{g(x_2)} \otimes \hat{a}_{LL}^{gg o J/\psi + X}$$

Impact of SPD data is estimated by

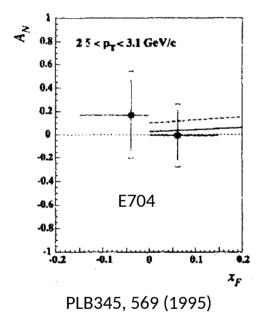

- prescribing stat. errors
 estimated for 1 year data taking
 at SPD with √s = 27 GeV
- Bayesian reweighing of MC replicas

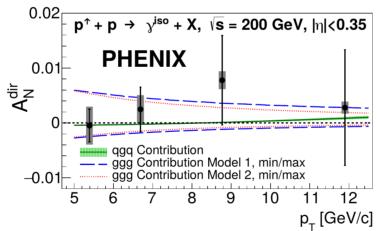

The relative uncertainty decreases by a factor of ~2 for x ~ 0.2-0.3.



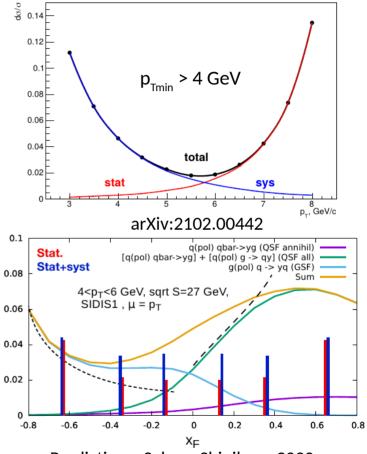
PRD100 114027 (2019)

On other measurements with charmonia



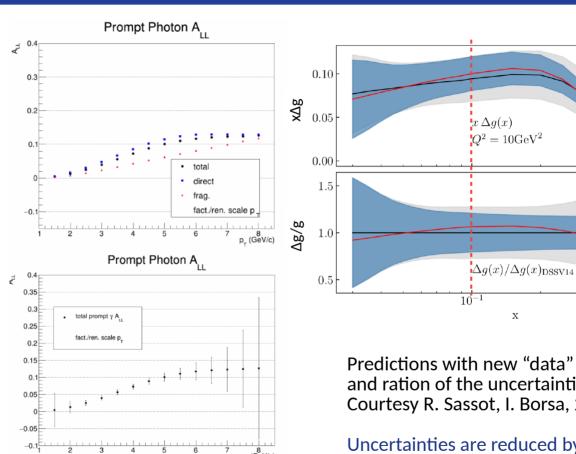


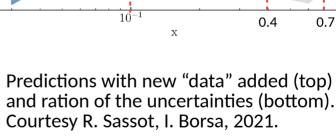
- $\eta_c \to p\overline{p}$, $\Lambda \overline{\Lambda}$, $\varphi \varphi$?
 - 500K selected events for η_c → p \overline{p}
 - huge background
- Double J/ψ production
 - 50-100 events/year for both J/ψ dilepton decay modes
 - pT dependence complimentary to high energy experiments
- $J/\psi\gamma$: limited statistics and large background


Prompt photons: A_N

- Straightforward theoretical interpretation
- very challenging experimentally

Phys. Rev. Lett. 127, 162001

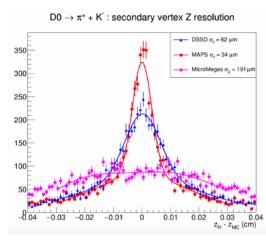

Predictions: Saleev, Shipilova, 2020

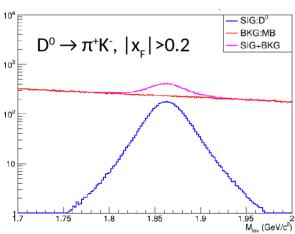

Prompt photons: A...

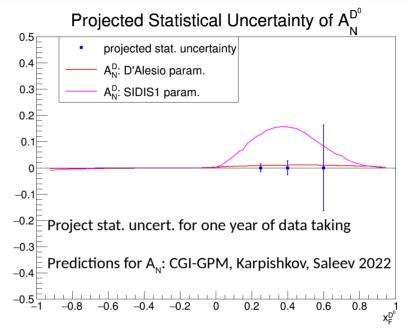
$$A_{LL}^{\gamma} pprox rac{\Delta g(x_1)}{g(x_1)} \otimes A_{1p}(x_2) \otimes \hat{a}_{LL}^{gq(\bar{q}) o \gamma q(\bar{q})} + (1 \leftrightarrow 2)$$

Impact of SPD data is estimated by

- generating "SPD data" according to current PDFs (NLO, NNPDF3.0, DSSV2014) - W. Vogelsong, 2021
- prescribing errors estimated for 1 year data taking at SPD with $\sqrt{s} = 27 \text{ GeV}$
- Bayesian reweighing of MC replicas




Uncertainties are reduced by factor of 2 for 0.4 < x < 0.7


DSSVMC

DSSVrew

Measurements with D mesons

- The largest production cross-section (almost two orders of magnitude larger than for J/ψ)
- Small D-meson boost at our energies
- Interpretation requires c-quark FF
- Projected uncertainties shown for D⁰ only
- D meson pair production probe for Boer-Mulders function

Deuteron gluon structure

 $\sigma(x_F, p_T)$, vector and tensor angular asymmetries

Nonbaryonic content of deuteron:

$$|6q\rangle = c_1 |NN\rangle + c_2 |\Delta\Delta\rangle + c_3 |CC\rangle$$

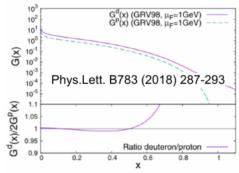
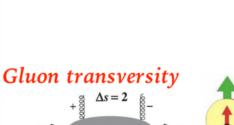
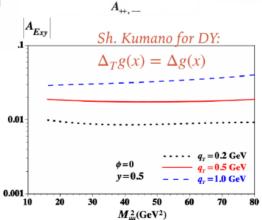
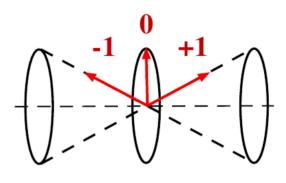
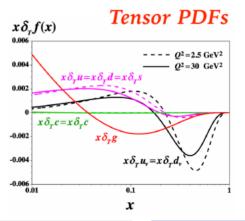
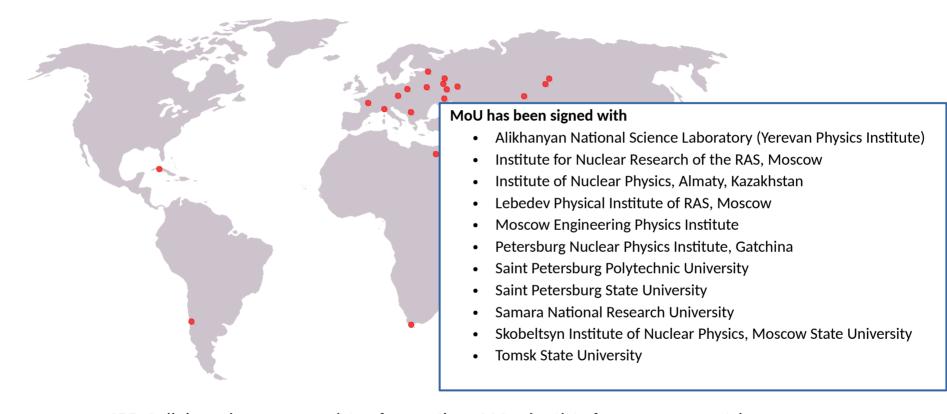





Fig. 6. Gluon PDF in the deuteron and in the nucleon.


Unpolarized gluons at high x:

Running strategy


Physics goal	Required time	Experimental conditions				
First stage						
Spin effects in <i>p-p</i> scattering	0.3 year	$p_{L,T}$ - $p_{L,T}$, \sqrt{s} < 7.5 GeV				
dibaryon resonanses						
Spin effects in <i>p-d</i> scattering,	0.3 year	d_{tensor} - p , \sqrt{s} < 7.5 GeV				
non-nucleonic structure of deuteron, \bar{p} yield						
Spin effects in <i>d-d</i> scattering	0.3 year	d_{tensor} - d_{tensor} , \sqrt{s} < 7.5 GeV				
hypernuclei						
Hyperon polarization, SRC,	together with MPD	ions up to Ca				
multiquarks						
Second stage						
Gluon TMDs,	1 year	p_T - p_T , \sqrt{s} =27 GeV				
SSA for light hadrons						
TMD-factorization test, SSA,	1 year	p_T - p_T , 7 GeV < \sqrt{s} < 27 GeV				
charm production near threshold,		(scan)				
onset of deconfinment, \bar{p} yield						
Gluon helicity,	1 year	p_L - p_L , \sqrt{s} =27 GeV				
Gluon transversity,	1 year	d_{tensor} - d_{tensor} , $\sqrt{s_{NN}} = 13.5 \text{ GeV}$				
non-nucleonic structure of deuteron,		or/and d_{tensor} - p_T , $\sqrt{s_{NN}} = 19 \text{ GeV}$				
"Tensor porlarized" PDFs		-				

SPD Collaboration

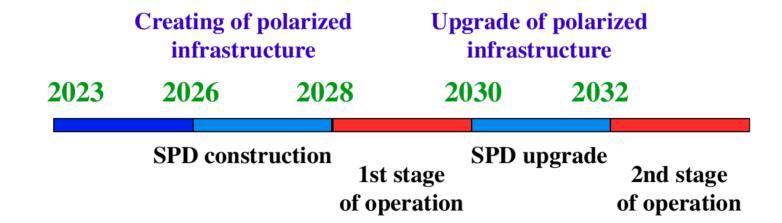
SPD Collaboration now consists of more than 300 scientists from many countries.

SPD Collaboration

SPD Collaboration now consists of more than 300 scientists from many countries.

SPD project timeline and tentative operating plan

2007: Idea of SPD project included to NICA activities at JINR


2014: SPD Lol approved by JINR PAC

2020: Completion of SPD CDR (arXiv:2102.00442v3)

2021: SPD Collaboration is established, preparation of TDR is started

Jan 2023: 1-st version of SPD TDR presented JINR PAC (http://spd.jinr.ru/spd-cdr/)

TDR to be finalized by the end of 2023.

Summary

- The SPD experiment is a comprehensive facility to study **polarized** and **unpolarized gluon content** of **proton** and **deuteron** at **high x** in p-p and d-d collisions with **√s up to 27 GeV**.
- The detector is optimized for three complementary probes: charmonia production, prompt photons, and D-meson production.
- SPD can contribute to:
 - gluon TMD (Sivers and Boer-Mulders)
 - gluon helicity PDF
 - gluon transversity in deuteron
 - unpolarized gluon PDFs of proton and deuteron
 - **...**
- Apart from that, the SPD physics program covers large variety of different aspects of QCD during the initial and final stages of the experiment.
- The physical program of SPD experiment with respect to nucleon gluon content is complementary to those of experiments at RHIC, EIC, and proposed fixed target program at LHC (AFTER, LHC-Spin).

spd.jinr.ru