

MATERIALS SELECTION OF THE SPD BEAM-BEAM COUNTER SCINTILLATION DETECTOR PROTOTYPE

The XXVth International Baldin Seminar on High Energy Physics Problems

Relativistic Nuclear Physics and Quantum Chromodynamics

National Research Nuclear University MEPhI

Zakharov A.M on behalf of the SPD Collaboration

22 September 2023

Table of

contents

- 1. NICA SPD: General
- 2. CAEN FERS-5200 readout system
- 3. Stand for prototype tests
- 4. Scintillation detector prototype materials
- 5. SiPMs calibration
- 6. Matte and Tyvek tiles comparison
- 7. CKTN and OK-72 comparison (various compositions of OK-72)
- 8. Fibers (SG91AS, SG92S, Y-11) comparison
- 9. Central tiles signal
- **10.Different geometries comparison**
- **11.Fibers bending loss**
- 12.1x1 mm² calibration
- **13.**Conclusion

NICA SPD: General

The Spin Physics Detector collaboration proposes to install a universal detector in the second interaction point of the NICA collider under construction (JINR, Dubna) to study the spin structure of the proton and deuteron and the other spin-related phenomena with polarized proton and deuteron beams at a collision energy up to 27 GeV and a luminosity up to 10^{32} cm⁻² s⁻¹

The main goals of the Beam-Beam Counters are:

- the local polarimetry at SPD basing on the measurements of the azimuthal asymmetries of polarized proton beams;
- the monitoring of beam collisions;
- participation in the precise determination of the collision time.

CAEN FERS-5200 readout system

FERS-5200 is an extendable high speed front-end readout system based on the DT5202 64-channel module for SiPM.

Concentrator DT5215 for the possibility of expanding the number of channels to 8192.

- SPECTROSCOPY.
- TIMING.
- SPECT_TIMING. The Spectroscopy + Timing

The A5202/DT5202 is based on the functions and readout chains of the Citiroc-1A ASIC.

Citiroc 1A allows triggering down to 1/3 p.e. and provides the charge measurement with a <u>good noise rejection</u>. Moreover, Citiroc 1A outputs the 32-channel triggers with a <u>high resolution</u> <u>timing</u> (better than 100 ps).

Stand for prototype tests

Tile system with external trigger – two scintillators with PMTs readout, covered in black paper

PMT Hamamatsu H10720-110

Trigger time resolution ~650 ps

Although CAEN FERS-5200 has an internal coincidence circuit, an external trigger proved to be more efficient for measurements on cosmic rays. Internal CC is used for radioactive source measurements.

Scintillation detector prototype materials

Line
3 (L;R)
2 (L;R)
1 (L;R)
central

Materials selection and tests with different material combinations of tile prototype includes:

- Scintillator: Matted or Tyvek covered
- Optical cement: CKTN MED vs OK-72
- Fiber: Saint-Gobain Crystals vs Kuraray
- SiPMs: $3x3 vs 1x1 mm^2$

Geometry of tiles, used in this work

(4 lines)

Similar to STAR EPD, but higher polar angle granularity

SiPMs Calibration

DT5202 with CAEN LED Driver (SP5601)

No cryocooler or any other temperature stabilizing technologies were used (future plans)

First attempts of calibration using radioactive source showed that we need a stable signal for calibration – the reason why led driver is the choice

Matte and Tyvek tiles comparison

Matte – tile, covered with white acrylic paint, so called "belil" (picture above)

Tyvek – tile, double covered with a unique nonwoven material made from high-density polyethylene continuous filaments (white paper)

Due to higher peak position (from 6% and up to 15% difference) and technological complexity of mass production for Tyvek covers, the option with matted one is more appropriate

6

CKTN and OK-72 comparison (various compositions of OK-72)

Line 3 (L;R) 2 (L;R)

1 (L;R)

central

Brand	Viscosity,	Operating	Spectral	Refractive
	cPs	temperature	characteristics	index
		range		
EJ-500	800	From -65	60-95% 300-350 nm,	1.574
		to $+105$ °C	95-100% 350-600 nm	
EPO-TEK	225 - 425	Room	94% 320 nm,	1.5318
301-2		temperature	99% 400-1200 nm,	589 nm
		- +65 °C	98% 1200-1600 nm	
EPO-TEK	100 - 200	Room	99% 382-980 nm,	1.519
301		temperature	97% 980-1640 nm,	589 nm
		- +65 °C	$95\% \ 16402040 \ \mathrm{nm}$	
CKTN MED	$15 \cdot 10^3$		92-96%	1.606
Mark E			500 nm	
OK-72		From -60	99% 400-2700 nm	1.587
		to $+60$ °C		

Optical cements and their characteristics

Although OK-72 is easier to use due to its low viscosity, different compositions of A to B components effect on light collection. More research required

Fibers (SG91AS, SG92S, Y-11) comparison

3x3 SiPMs

central

Specific Properties of Standard Formulations						
Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	# of Photons per MeV**		
BCF-10	blue	432	2.7	~8000		
BCF-12	blue	435	3.2	~8000		
BCF-20	green	492	2.7	~8000		
BCF-60	green	530	7	~7100		
BCF-91A	green	494	12	n/a		
BCF-92	green	492	2.7	n/a		
BCF-98	n/a	n/a	n/a	n/a		
** For Minimum Ionizing Particle (MIP), corrected for PMT sensitivity						

Description				Absorption		
		Spectra			[m]	Characteristics
Y-7(100)	green	See the following figure	490	439	>2.8	Blue to Green Shifter
Y-8(100)	green		511	455	>3.0	Blue to Green Shifter
Y-11(200)	green		476	430	>3.5	Blue to Green Shifter (K-27 formulation) Long Attenuation Length and High Light Yield
B-2(200)	blue		437	375	>3.5	UV to Blue shifter
B-3(200)	blue		450	351	>4.0	UV to Blue shifter
		-				

Due to fact, that Kuraray Y-11 fiber collects photons with higher energy (higher peak position), the choice of Y-11 fibers is more appropriate

Central tiles signal

Line 3 (L;R) 2 (L;R) 1 (L;R) central

 x_2

$$I = I_0 \times e^{-\frac{x}{350}}$$
 - attenuation law

$$\frac{I_1}{I_2} = \frac{e^{-\frac{x_1}{350}}}{e^{-\frac{x_2}{350}}} = e^{\frac{x_2 - x_1}{350}}$$
$$-x_1 = 36.5 - 5.5 = 31 \ (\pm 2)$$

cm

 $I_1 = I_2 \times e^{\frac{31\pm 2}{350}} = 52325 \times 1.0926 =$ 57170.9 ± 4546.1, that is almost identical to 63453 within the error

Signal from central tiles is the step to move towards measuring an assembled system of tiles with 4 or more lines

Different geometries comparison

central

Central, line 1 and 3 tiles are

participants for comparison

Signals from central, line 1 and line 3 tiles seem to be different because of different fiber curvature (see tile system scheme on the left)

10

Additional: 1x1 SiPM callibration

Tile with two WLS outputs of single fiber with radioactive source are used

Conclusion

Future plans

- 1. The **scintillator detector prototype tests** with CAEN FERS-5200 readout system has been started.
- 2. The comparison of **matted and Tyvek covered** tiles have been done. Matted one proved to be more efficient in both ways: amount of reflected light and convenience.
- 3. The comparison of **CKTN MED and OK-72 optical cements** have been done. Since different compositions highly effect on light collection, more research is required.
- 4. The comparison of **SG BCF91AS, BCF92S and Kuraray Y-11 WLS fibers** have been done. Due to fact, that Y-11 fiber collects photons with higher energy than SG fibers, it proved to be more efficient for our goals.
- 5. The study of **fibers bending loss** and verification of attenuation law were performed. Integral difference between tiles with various fiber lengths fits the theory. Bending loss study doesn't fit the theory in case of Y-11 fiber more research is required.
- 6. First **1x1 mm² SiPMs** performance tests are obtained. The work has shown that it is necessary to modernize SiPMs connectors.

- Temperature stabilizing technologies
- Complete transition to 1x1 SiPMs
- Selection of A to B composition for optical cements
- Tests with 4 lines sector
- Following studies of fiber bending influence on light collection
- Obtaining tiles time resolution

THANK YOU FOR YOUR ATTENTION

BACKUP

SG Fast OK-72 Central, geometry comparison Run 79 200 배 Entries 8192 Mean 201.3 180 Std Dev 241.2 160 χ^2 / ndf 960.2 / 1002 Width 30.28 ± 0.88 140 MP 364.2 ± 1.4 2.571e+04 ± 1.879e+02 Area 120 GSigma 105.1 ± 2.4 100 80 60 40 20 0^[]0 200 400 600 800 1000 E, Channels

SG Fast OK-72 Line 3, geometry comparison