Exploring the possibility of

 studying the Drell-Yang process in the SPD (NICA) experiment.A.N.Skachkova (JINR, Dubna)

The XV-th International School-Conference
"The Actual Problems of Microworld Physics"

Minsk, Belarus, 27 August - 3 September, 2023

The Drell-Yan processes are collisions of hadrons at high energies, which give rise to a neutral gauge boson - a virtual photon or a weak ZO boson during the interaction of a quark and an antiquark, which then decays into a pair of oppositely charged leptons

They are unique processes for the study of spin effects in hadron interactions, which allow access to parton distributions (describing the distributions of quarks and gluons in hadrons (nuclei) by two variables: \boldsymbol{x} (the fraction of the longitudinal moment k of the hadron carried by the active parton) and $\mathbf{p T}$ (the transverse momentum of the active parton)) and extract new information about the structure of nuclear matter and elementary particles.
Precision extraction of parton distributions from some experimental data makes it possible to use them for predictions in other physical processes.

Experimental studies of the Drell-Yan processes make it possible to directly measure various spin asymmetries in collisions of unpolarized, transversely and longitudinally polarized hadrons.

Drell-Yang reactions are an important complement to other reactions (such as, for example, semi-inclusive deep-elastic scattering reactions (SIDIS)).

TMD-PDF
related to fragmentation functions

Why Drell-Yan? -
Direct access to TMD-PDFs

With respect to DIS (inclusive or semiinclusive) by rotating the Feynman diagram, Drell-Yan is an s-channel process, and SIDIS is a t-channel process

The analysis of the measured spin characteristics allows us to extract information about the parton pulse distributions TMD (relative to the transverse and longitudinal pulse of the active parton) and PDF (relative to the longitudinal pulse of the active parton), which are universal non-perturbative functions (describing effects at large distances / or at small pulse values), independent of the type of physical process characteristics (with the exception of T-odd TMD (T-odd TMD of Boer-Mulders and Sievers), changing the sign in the SIDIS and Drell-Yan processes).

Partonic distributions

 are matrix elements of operators constructed in terms of quark and gluon fields and
averaged over hadron states (vacuum states)

$$
\mathrm{d} \sigma^{D-Y}=\sum f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}}
$$

To extract PDF distributions, the most suitable conditions are when $\mathrm{M}^{1+1}{ }_{\text {inv }}(=\mathrm{Q}$ transmitted 4 - momentum) and PT^{1+1} are of the same order.
To extract information about TMD distributions, the scale of $\mathrm{M}^{1+1}{ }_{\text {inv }}(=\mathrm{Q}) \gg \mathrm{PT}^{1+1}$ of lepton pair $\sim=$ transverse momentum of quarks and gluons kT inside colliding hadrons is ideal

Parton Distribution Functions

A number of PDFs depends on the order of the QCD approximations.
At leading order (LO, twist-2) 3 collinear (integrated over kt) PDFs are needed for a full description of the nucleon structure:

The PDFs f_{1} and g_{1} are measured rather well. The PDF $h_{1}\left(x, Q^{2}\right)$ is poorly studied. It was historically introduced right for DY process.

- Density $f_{1}\left(x, Q^{2}\right)$ - distribution of the parton Number/ probability to find quarks within the non-polarized (U) nucleon carrying a fraction x of the nucleon momentum $\quad \mathbf{f}_{1}=$ ©
- Helicity (chirality) $g_{1}\left(x, Q^{2}\right) \equiv g_{1 L}(x$, \mathbf{Q}^{2}) distribution of longitudinal polarization of quarks in longitudinally polarized (L) nucleon/ the difference in probabilities to find quarks in a longitudinally polarized nucleon with their spin aligned or anti- aligned to the spin of the nucleon

- Transversity $h_{1}\left(x, Q^{2}\right)$ - distribution of transverse polarization of quarks in transversely polarized (T) nucleon

The structure of the proton: TMD PDF

Taking into account the quark intrinsic transverse momentum kT, at leading order 8 TMD (5 additional) PDFs are needed for a full description of the nucleon structure, which are functions of 3 variables ($x, k T, Q^{2}$). They are vanishes when integrating over kT .

At the sub-leading twist (twist-3), there are still 16 TMD PDFs containing the information on the nucleon structure. They have no definite physics interpretation yet.
Since TMD distributions are nonperturbative functions, they cannot be calculated within the framework of QCD. Therefore, the main model-independent tool for studying TMD is the analysis of spin effects in SIDIS and Drell-Yang processes.

- $\mathrm{f}^{\perp}{ }_{1 \mathrm{~T}}$ (Sivers) - represents the distribution over the transverse momentum of non-polarized quarks in a transversely polarized nucleon (transverse spin);
- $\mathrm{g}^{\perp}{ }_{1 \mathrm{~T}}($ Worm-gear-T) - correlation between the transverse spin and the longitudinal quark polarization;

- $\mathrm{h}^{\perp}{ }_{1}$ (Boer-Mulders) - distribution over the transverse momentum of transversely polarized quarks in the non-polarized nucleon ;
- ${ }^{\perp}{ }_{1 \mathrm{~L}}$ (Worm-gear-L) - correlation between the longitudinal polarization of the nucleon (longitudinal spin) and the transverse momentum of quarks;

- $\mathbf{h}^{\perp}{ }_{1 \mathrm{~T}}$ (Pretzelosity) - distribution over the transverse momentum of transversely polarized quarks in the transversely polarized nucleon.

It is very important to measure Worm-gear-T, L and Pretzelosity which are still not measured or measured with large uncertainties.
The last one would give new information (at least within some models) on the possible role of constituent's orbital momenta in the resolution of the nucleon spin crisis.

The PDFs studies via asymmetry of the DY pairs production cross sections

The cross section of the DY pair's production cannot be measured directly because there is no single beam containing particles with the U, L and T polarization.
To measure SF's one can use the following procedure:
1-st - to integrate differential cross section over the azimuthal angle φ between the Lepton and Hadron planes in the Collins-Soper reference frame,
2-nd - following the SIDIS practice, to measure azimuthal asymmetries of the DY
 pairs production cross sections.

The azimuthal asymmetries can be calculated as ratios of cross sections differences to the sum of the integrated over φ cross sections $\sigma_{\text {int }}$:

- The numerator of the ratio is calculated as a difference of the DY pair's production cross sections in the collision of hadrons h_{a} and h_{b} with different polarizations.
- The denominator of the ratio is calculated as a sum of $\sigma_{i n t}$'s calculated for the same hadron polarizations and same $\mathrm{x}_{\mathrm{a}}, \mathrm{x}_{\mathrm{b}}$ regions as in numerator.

Previouse Drell-Yan experiments

Experiment	Interaction	Reaction	Energy	
CERN-NA3	$\mathrm{pN}(\mathrm{Pt})$	p Nucleus --> mu+ mu-X	Plab	$=400 \mathrm{GeV}$
CERN-NA10	pi-N(W)	pi- Nucleus --> mu+ mu- X	Plab	= 194, 286 GeV
CERN-NA58 (COMPASS)	pi-p	pi $p \rightarrow m u+m u-X$	Plab	$=190 \mathrm{GeV}$
CERN-WA11	pi-N(Be)	pi- Nucleus --> mu+ mu-X	Plab	$=150 / 175 \mathrm{GeV}$
CERN-WA39	$\begin{aligned} & \mathrm{pi}+\mathrm{N}(\mathrm{~W}) \\ & \mathrm{pi}-\mathrm{N}(\mathrm{~W}) \end{aligned}$	$\begin{aligned} & \text { pi+ Nucleus --> mu+ mu- X, } \\ & \text { pi- Nucleus --> mu+ mu-X } \end{aligned}$	Plab	$=39.5 \mathrm{GeV}$
CERN-R108	pp	$p p-->e+e-X$	Plab(Ecm) $=62.4 \mathrm{GeV}$	
CERN-R209	pp	pp --> mu+ mu-X	Plab (sqrt(s)) $=44,62 \mathrm{GeV}$	
CERN-R808	pp	$p p-->+e-x$	Plab (sqrt(s)) = 53, 63 GeV	
CERN-UA2	pbar p	pbar p --> mu+ mu-X	Plab	$=630 \mathrm{GeV}$
Fermilab-E288	$\mathrm{pN}(\mathrm{Pt})$	p Nucleus --> mu+ mu-X	Plab	= 200/300/400 GeV
Fermilab-E325	$\mathrm{pN}(\mathrm{Cu})$	p Nucleus --> mu+ mu- X	Plab	$=200,300,400 \mathrm{GeV}$
Fermilab-E326	pi-N(W)	pi- Nucleus --> mu+ mu- X	Plab	$=225 \mathrm{GeV}$
Fermilab-E439	$\mathrm{pN}(\mathrm{Cu})$	p Nucleus --> mu+ mu- X	Plab	$=400 \mathrm{GeV}$
Fermilab-E444	$\mathrm{pN}(\mathrm{C}, \mathrm{Cu}, \mathrm{W})$	```p Nucleus --> mu+ mu- X, pi+ Nucleus --> mu+ mu- X, pi- Nucleus --> mu+ mu-X```	Plab	$=225 \mathrm{GeV}$
Fermilab-E537	Pbar N(W), pi- N(W)	$\begin{aligned} & \text { pbar p --> e+ e- X, pbar N --> mu+ mu- X, } \\ & \text { pi- Nucleus --> mu+ mu- X } \end{aligned}$	Plab	$=125 \mathrm{GeV}$
Fermilab-E605	$\mathrm{pN}(\mathrm{Cu})$	p Nucleus --> mu+ mu- X	Plab	$=800 \mathrm{GeV}$
Fermilab-E615	pi- N(W)	pi- Nucleus --> mu+ mu- X	Plab	$=252 \mathrm{GeV}$
Fermilab-E740(D0)	pbar p	pbar p --> e+e-X	Ecms (sqrt(s)) $=1800 \mathrm{GeV}$	
Fermilab-E741(CDF)	pbar p	pbar $p-->m u+m u-X, \operatorname{pbar} p-->e+e-X$	Ecms (sqrt(s)) $=1800 \mathrm{GeV}$	
Fermilab-E772	pp	pp --> mu+ mu-X	Plab	$=800 \mathrm{GeV}$
Fermilab-E866(NUSEA)	pp	p p --> mu+ mu-X	Plab	$=800 \mathrm{GeV}$

Experiments studying nucleon spin structure

experiment	CERN, COMPASS-II	FAIR, PANDA	FNAL, E-906	RHIC, STAR	RHICPHENIX	$\begin{array}{\|l\|} \hline \text { NICA, } \\ \text { SPD } \end{array}$
mode	Fixed Target	Fixed T.	Fixed T.	collider	collider	collider
Beam/target	п-, p	anti-p, p	п-, p	pp	pp	pp, pd,dd
Polarization:b/t	0; 0.8	0; 0	0; 0	0.5	0.5	0.9
Luminosity	2.1033	2.1032	3.5-1035	$5 \cdot 10^{32}$	$5 \cdot 10^{32}$	10^{32}
Vs, GeV	19	<5.5	16	200, 500	200, 500	10-26
$x_{1 \text { (beam) }}$ range	0.1-0.9	0.1-0.8	0.1-0.5	0.03-1.0	0.03-1.0	0.1-0.8
$q_{\text {T }}, \mathrm{GeV}$	0.5-4.0	0.5-1.5	0.5-3.0	1.0-10.0	1.0-10.0	0.5-6.0
Lepton pairs,	$\mu-\mu+$	$\mu-\mu+$	$\mu-\mu+$	$\mu-\mu+$	$\mu-\mu+$	$\mu-\mu+$, e+e-
Data taking	2015	>2025	2013	>2016	>2016	>2020
Transversity	NO	NO (?)	NO	YES	YES	YES
Boer-Mulders	YES	YES	YES	YES	YES	YES
Sivers	YES	YES (?)	YES	YES	YES	YES
Pretzelosity	NO	NO	NO	NO	Yes	YES
Worm Gear	No	No	No	No	No	YES

arXiv:1408.3959, 2014

The tests at the SPD would have a number of advantages for DY measurements related to the nucleon structure studies:

- Running with pp, pd and dd beams,
- Scan of the effects over a range of beam energies,
- Running with non-polarized, transverse and longitudinally polarized beams and their combinations.

The above advantages would permit, for the first time, to perform comprehensive studies of all leading twist PDFs of the nucleon in a single experiment with minimal systematic errors.

NICA

Beam energies:

SPD - Spin Physics Detector

$p \uparrow-p \uparrow\left({ }^{s} s_{p p}\right)=12 \div 27 \mathrm{GeV}(5 \div 12.6 \mathrm{GeV}$ of proton kinetic energy), $d \uparrow-d \uparrow\left({ }^{\prime} s_{N N}\right)=4 \div 13.5 \mathrm{GeV}(2 \div 5.9 \mathrm{GeV} / \mathrm{u}$ of ion kinetic energy), $p \uparrow-d \uparrow\left(V s_{N N}\right) \leq 19 \mathrm{GeV}$
$>$ Luminosity up to $1 \cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(\mathrm{p}-\mathrm{p})$

$$
0.25 \cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(\mathrm{~d}-\mathrm{d})
$$

Universal 4π detector with advanced tracking and particle identification capabilities based on modern technologies.
> Capability to detect events with high collision rate (up to 4MHz)
> Tracking : $\sim 100 \mu \mathrm{~m}$ vertex resolution
> Photon detection with the energy resolution ~ 5\%/VE
> Transverse momentum resolution $\underset{\text { pT }}{\sigma} / \mathrm{pT} \approx 2 \%$

Schematic view of the SPD setup

SPD Physics Program

The Spin Physics Detector (SPD) project aims to investigate the nucleon spin structure and polarization phenomena in polarized p-p and d-d collisions.

«Possible studies at the first stage of the NICA collider operation with polarized and unpolarized proton and deuteron beams» arXiv:2102.08477, 2021
«On the physics potential to study the gluon content of proton and deuteron at NICA SPD» arXiv:2011.15005, 2021

The plans to study Drell-Yan (DY) at SPD initially were the first in the list of physics proposal at SPD facility «Spin Physics Experiments at NICA-SPD with polarized proton and deutron beams>. Lol arXiv:1408.3959,2014
V.A. Matveev, R.M. Muradian, A.N. Tavkhelidze (MMT)
(V.A. Matveev, R.M. Muradian, A.N Tavkhelidze, JINR-P2-4543, JINR, Dubna, 1969; SLAC-TRANS-0098)

process, called also as Drell-Yan

(S.D. Drell, T.M. Yan, SLAC-PUB-0755, Jun 1970,12p.; Phys.Rev.Lett. 25(1970)316-320, 1970)
The dominant mechanism
of the $\boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}$production is the perturbative QED/QCD
partonic $2 \rightarrow 2$ process

$$
\begin{gathered}
\overline{q q}->\gamma^{*} / z^{\circ} \rightarrow \ell^{+} \ell^{-} \\
\sigma=9.6 * 10^{3} p b
\end{gathered}
$$

PYTHIA 6.4 simulation for the $E_{(p-p \mathrm{cms})}=27 \mathrm{GeV}$
For the Luminosity $L=1 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ with assumption of $10^{7} \mathrm{sec} /$ year of beam operation we expect up to 9.5×10^{6} Drell-Yan events/year (without any cuts) \& ~79 700 Drell-Yan events/year for $\underline{M}_{\text {inv }}\left(\mu^{+} \mu^{-}\right)>4 \mathrm{GeV}$ (and first 2 cuts)

Main backgrounds

Main contribution to backgrounds for ${ }^{-} q q \rightarrow Y^{*} \rightarrow \mu^{+} \mu \Gamma^{-}$ process comes from two sources: QCD (+charmonium) and Minimun-bias events

Initial conditions for simulation (both signal and BKG) are: ISR, FSR, MPI - ON ; Lund fragmentation

We allow particles decay (and produce muons) in the volume before the Muon (Range) System :
cylindr radius $R=2400 \mathrm{~mm} /$ size from the centre along Z axis $L=4000 \mathrm{~mm}$ and search for muons in the angle region $3^{\circ}<0<177^{\circ}$

Contribution from b-quarks (subprocesses 81, 82, 461-479) is negligible. Total cross-section is $0.34 \times 10^{-6} \mathrm{mb}$. Initial $\mathrm{S} / \mathrm{B} \simeq 27$.

Contribution from charmonia (subprocesses 86, 87-89, 104-105, 106, 421-439) is less than from QCD and Mini-bias, but significant.
Their cross-section is $8.6 \times 10^{-4} \mathrm{mb}$. Initial $\mathrm{S} / \mathrm{B}=1.0 \times 10^{-2}$.
 82. q + g--> c cbar)

Total cross-section is $1.9 \times 10^{-3} \mathbf{~ m b}$. Initial $S / B \simeq 5.2 \times 10^{-3}$
\{Easy to suppress\}

Main backgrounds

Now they are included in the total list of QCD events modeling (subprocesses 10-14, 28-29, 53, 68)

The main contributions come from the following partonic subprocesses:
$q+g \rightarrow q+g$ (gives 43.5\% of QCD events with the $\boldsymbol{\sigma}=\mathbf{9 2 . 7} \mathbf{~ m b}$); $g+g \rightarrow g+g$ (gives 46.7\% of QCD events with the $\boldsymbol{\sigma}=\mathbf{9 9 . 5} \mathrm{mb}$); $q+q^{\prime} \rightarrow q+q^{\prime}$ (gives 9.2% of QCD events with the $\boldsymbol{\sigma}=\mathbf{1 9 . 7} \mathbf{~ m b}$); For QCD background $\sigma=212.9 \mathrm{mb}, \mathrm{S} / \mathrm{B} \simeq 4.6 \times 10^{-8}$ (one order stronger than Mini-bias!)

Minimum-Bias processes

95. Low - PT scattering ($\sim 65 \%$ of MB events with the $\boldsymbol{\sigma}=14.0 \mathrm{mb}$); 92-93. Single diffractive (24.8% of MB events with the $\boldsymbol{\sigma}=7.35 \mathrm{mb}$);
96. Double diffractive (7.2\% of MB events with the $\boldsymbol{\sigma}=\mathbf{2 . 1 2} \mathbf{~ m b}$);

$$
\sigma=23.7 \mathrm{mb} . \mathrm{S} / \mathrm{B} \simeq 4.2 \times 10^{-7}
$$

Effective cut off on $E(P)$ only in the region $\mathrm{E}^{\mu}{ }_{\text {bkg }}<1.5 \mathrm{GeV}$ (example $\mathrm{E}^{{ }^{\prime}}{ }_{\text {bkg }}=1.0 \mathrm{GeV}$) where is the maximum gradient in $E^{\nu}{ }_{\text {bkg }}$ distribution

The most effective cuts off are in the region $\mathrm{PT}^{\mathrm{bkg}}$ < 1.5 GeV (for example $\mathrm{PT}^{\mu^{\mathrm{bkg}}} \mathrm{F}=0.6 \mathrm{GeV}$)

Invariant mass cut
(picture corresponds to minimum-bias backgrounds)

Minv ${ }^{\text {mut, mu- }}$ distribution

The most effective cut is in the region $\sim 1 \mathrm{GeV}$.
Further increase of Minv cut has no sense for Minimum-bias background events (it leads to significant loss of signal events without real improvement of S / B ratio) except backgrounds in the regions of J / Ψ and other resonances production.

Efficiency of $M_{\text {inv }}\left(\mu^{+}, \mu^{-}\right)$cut

Together with the cut on $\mathrm{E}(\mathrm{P})^{\mu}>1 \mathrm{GeV}, \mathrm{PT}^{\mu}>0.6 \mathrm{GeV}$ and opposite sign leptons

Cut efficiency $=\operatorname{Nev}(c u t N) / \operatorname{Nev}$ (init)

Minv cut	Rest of BKG	Cut efficiency for BKG	Rest of SIG	Rest of SIG events/year	Cut efficiency for SIG	S/B
$\mathrm{M}^{\mu \mu}{ }_{\text {inv }}>1.0 \mathrm{GeV}$	$1.70 \times 10^{-2} \%$	1.36	40.5 \%	3869571	1.02	$1.0 \times 10^{-4} \%$
$\mathrm{M}^{\mu \mu}{ }_{\text {inv }}>1.5 \mathrm{GeV}$	$1.35 \times 10^{2} \%$	1.69	16.7 \%	1595601	2.97	$6.3 \times 10^{-5} \%$
$\mathrm{M}^{\mu \mu}{ }_{\text {inv }}>2.0 \mathrm{GeV}$	$9.57 \times 10^{-3} \%$	2.41	8.3 \%	793023	7.28	$4.4 \times 10^{-5} \%$
$\mathrm{M}^{\mu \mu}{ }_{\text {inv }}>2.5 \mathrm{GeV}$	$6.05 \times 10^{-3} \%$	3.80	4.5 \%	429952	15.9	$3.8 \times 10^{-5} \%$
$\mathrm{M}^{\mu \mu}{ }_{\text {inv }}>3.0 \mathrm{GeV}$	$3.70 \times 10^{-3} \%$	6.22	2.5 \%	238862	32.0	$3.4 \times 10^{-5 \%}$
$\mathrm{M}^{\mu \mu}{ }_{\text {inv }}>3.5 \mathrm{GeV}$	$2.24 \times 10^{-3} \%$	10.3	1.4 \%	133762	60.7	$3.2 \times 10^{-5} \%$
$\mathrm{M}^{\mu \nu}{ }_{\text {inv }}>4.0 \mathrm{GeV}$	$1.38 \times 10^{-3} \%$	16.7	0.8 \%	76435	110.1	$2.9 \times 10^{-5} \%$
$\mathrm{M}^{\mu \mu}{ }_{\text {inv }}>4.5 \mathrm{GeV}$	$8.49 \times 10^{-4} \%$	27.1	0.5 \%	47772	192.2	$3.0 \times 10^{-5} \%$
$\mathrm{M}^{\mu \mu}{ }_{\text {inv }}>5.0 \mathrm{GeV}$	$5.28 \times 10^{-4} \%$	43.7	0.3 \%	28663	328.0	$2.9 \times 10^{-5} \%$

Minv cut doesn"t influence much on S / B ratio. But at $\mathrm{M}^{\mu \mu}{ }_{\text {inv }}>4.0 \mathrm{GeV}$ we have too small number of events/year.

$\mathrm{E}^{\mu / P T^{\mu} \text { correlations for muons with }}$ $\max ($ fast $) / \min ($ slow $) E^{\mu}$ in the pair

$$
\mathrm{PT}_{\text {fast }}>1.5 \mathrm{GeV}
$$

$\mathrm{E}^{\mu}>1.0 \mathrm{GeV}$

$\mathrm{PT}^{\mu}{ }_{\text {fast }}>1.5 \mathrm{GeV}$

$\mathrm{PT}^{\mu}>0.6 \mathrm{GeV}$

Lepton (μ) isolation criteria

Esum / R

The plots show the distributions over summarized energy of the final state charged particles in the cones of radius
$\mathbf{R}_{\text {isolation }}=\forall \Delta \eta^{2}+\Delta \varphi^{2}$ respect to the (η - pseudorapidity, φ - azimuthal angle)
upper plot signal events
bottom plot Mini-bias background
Isolation criteria ($\mathrm{R}_{\text {isolation }}=0.2$) $\mathrm{E}_{\text {sum }}$ (of particles) $<0.5 \mathrm{GeV}$
allows to separate most part of Mini-bias \& QCD bkg muons with additional loss of 0.7% of signal events
after applied cuts discussed above

Cut on $\mathrm{PT}_{\text {vecsum }}$ - vector sum of all particles transverse momenta in event

B

Analogous cut on $P_{\text {vecsum }}$ - vector sum of all particles momenta in event

Sig \& BKG in log scale

Pvecsum_tot distribution

$$
\begin{gathered}
\mathrm{P}_{\text {vecsum }}<0.2 \mathrm{GeV} \\
\text { BKG suppression factor }(\text { Eff })=18-19
\end{gathered}
$$

Cut on $E_{\text {sum }}$ - summarized energy of all detected particles in event

Sig \& BKG
in log scale

$$
\mathrm{E}_{\text {sum }}>26.8 \mathrm{GeV}
$$

BKG suppression factor (Eff) = 58 (MB) - 67 (QCD)

Proposed cuts

1. Events with only 2 muons with $\mathrm{PT}^{\mu}>0.6 \mathrm{GeV}, \mathrm{E}^{\mu}>1.0 \mathrm{GeV}$
2. Muons are of the opposite sign
3. $M_{\text {inv }}\left(\mu^{+}, \mu^{-}\right)>1.0 \mathrm{GeV}$
4. PT $_{\text {fast }}>1.5 \mathrm{GeV}$
5. The vertex of production placed within the distance from the interaction point $R<1$ (30) mm
But! Fit program can misidentify μ and π as one track due to small angle of $\pi->\mu(+v)$ decay .
6. Cut on summarized energy of all detected (without pipe zone and neutrino) particles in event $\mathrm{E}_{\text {sum }}>26.8 \mathrm{GeV}$
7. Isolation criterion $E_{(R \text { isolation }=0.2)}<0.5 \mathrm{GeV}$

Cuts separate and summarized efficiency for Minimun-bias background events (109) Efficiency Eff (K,N) = Nev(cutN) / Nev(cutK)

N of cuts	S/B ratio	Efficiency for BKG	Rest of BKG	Efficiency for SIG	Rest of SIG
1 Exactly 2μ with $\mathrm{PT}^{\mu}>0.6$ $\mathrm{GeV}, \mathrm{P}^{(\mathrm{E})^{\mu}}>1.0 \mathrm{GeV}$	5.1 * 10^{-4}	Eff (1, init) $=3480$	$2.9 \times 10^{-2} \%$	2.3	44.1 \%
$\mathbf{2}^{+1} 2 \mu$ are of the opposite sign	8.9 * $10-4$	Eff $(2,1)=1.8$	$1.6 \times 10^{-2} \%$	1.01	43.8 \%
$3^{+2+1} M_{\text {inv }}(\mu+, \mu-)>1.0 \mathrm{GeV}$	1.2 * 10^{-3}	Eff $(3,2)=1.3$	$1.2 \times 10^{-2} \%$	1.01	43.8 \%
4^{+3+2+1} PT $_{\text {Emax }}>1.5 \mathrm{GeV}$	1.1 * 10^{-2}	Eff $(4,3)=13.2$	$9.1 \times 10^{-4} \%$	1.43	30.5 \%
$5^{+3+2+1} E^{\text {all }}$ sum ${ }^{\text {a }}$ 26.8 GeV	2.6 * 10^{-2}	Eff (5,3) = 58.3	$2.1 \times 10^{-4} \%$	2.63	16.6 \%
$6^{+3+2+1} \mathrm{PT}^{\text {all }}$ vecsum ${ }^{\text {a }}$ < 0.2 GeV	2.9 * 10^{-3}	Eff $(6,3)=4.1$	$2.9 \times 10^{-3} \%$	1.70	25.7 \%
7^{+3+2+1} Pall $_{\text {vecsum }}<0.2 \mathrm{GeV}$	9.4 * 10^{-3}	Eff (7,3) = 18.4	$6.5 \times 10^{-4} \%$	2.34	18.7 \%
8^{+3+2+1} Isolation criterium	47.6	Eff $(8,3)=30177$	$4.0 \times 10^{-7} \%$	1.01	43.2 \%
$9^{+3+2+1} R_{\text {vertex }}<1 \mathrm{~mm}$	8.5 * 10^{-1}	Eff $(9,3)=710$	$1.7 \times 10^{-5} \%$	1.01	43.5 \%
$10^{+3+2+1} \quad R_{\text {vertex }}<30 \mathrm{~mm}$	7.1 * 10^{-1}	Eff $(10,3)=597$	$2.0 \times 10^{-5} \%$	1.01	43.5 \%
$5^{+4+3+2+1} E^{\text {all }}{ }_{\text {sum }}>26.8 \mathrm{GeV}$	2.3 * 10^{-1}	Eff (5,4) = 52.7	$1.7 \times 10^{-5} \%$	2.52	12.1 \%
8+4+3+2+1 Isolation criterium	24.7	Eff (8,4) = 2280	$4.0 \times 10^{-7} \%$	1.02	29.9 \%
8+5+4+3+2+1 Isolation criterium	> 54	Eff $(8,5)>173$	$<1.0 \times 10^{-7} \%$	1.87	16.3 \%

Cuts separate and summarized efficiency for QCD (+charmonia) background events (10 ${ }^{9}$)

 Efficiency Eff (K,N) = Nev(cutN) / Nev(cutK)

 Efficiency Eff (K,N) = Nev(cutN) / Nev(cutK)}

N of cuts

S/B ratio
Efficiency for BKG
Rest of BKG
Efficiency for SIG

Rest of SIG

1 Exactly 2μ with $\mathrm{PT}^{\mu}>0.6$ $\mathrm{GeV}, \mathrm{P}(\mathrm{E})^{\mu}>1.0 \mathrm{GeV}$	$4.4 * 10-5$	Eff (1, init) = $\mathbf{2 4 7 1}$	$4.0 \times 10^{-2} \%$	2.8	35.3 \%
$\mathbf{2}^{\mathbf{+ 1}} 2 \mu$ are of the opposite sign	7.4*10-5	Eff $(2,1)=1.7$	$2.3 \times 10^{-2} \%$	1.2	33.3 \%
$3^{+2+1} M_{\text {inv }}(\mu+, \mu-)>1.0 \mathrm{GeV}$	1.0 * 10-4	Eff $(3,2)=1.3$	$1.7 \times 10^{-2} \%$	1.0	33.3 \%
$4^{+3+2+1} \mathrm{PT}_{\text {Emax }}>1.5 \mathrm{GeV}$	7.4*10-4	Eff (4,3) = 14.1	$1.2 \times 10^{-3} \%$	1.9	17.6 \%
$5^{+3+2+1} E_{\text {all }}^{\text {sum }}$ > 26.8 GeV	2.4 * 10-3	Eff (5,3) $=\mathbf{6 7 . 4}$	$2.5 \times 10^{-4} \%$	2.8	11.7\%
$6^{+3+2+1} \mathrm{PT}^{\text {all }}{ }_{\text {vecsum }}<0.2 \mathrm{GeV}$	2.5 * 10-4	Eff $(6,3)=4.2$	$4.0 \times 10^{-3} \%$	1.7	19.6 \%
7^{+3+2+1} Pall $^{\text {vecsum }}<0.2 \mathrm{GeV}$	9.3* 10-4	Eff (7,3) = 19.7	$8.6 \times 10^{-4} \%$	2.2	15.7 \%
8+3+2+1 Isolation criterium	>17	Eff (8,3) > 169847	$<1.0 \times 10^{-7} \%$	1.0	33.3 \%
$9^{+3+2+1} R_{\text {vertex }}<1 \mathrm{~mm}$	5.5 * 10-2	Eff (9,3) = 551	$3.0 \times 10^{-5} \%$	1.0	33.3 \%
$10^{+3+2+1} R_{\text {vertex }}<30 \mathrm{~mm}$	4.8 * 10-2	Eff $(10,3)=479$	$3.5 \times 10^{-5} \%$	1.0	33.3 \%
$5^{+4+3+2+1} E^{\text {all }}$ sum $>26.8 \mathrm{GeV}$	1.6*10-2	Eff (5,4) = 64.5	$1.8 \times 10^{-5} \%$	3.0	5.9 \%
$8^{+4+3+2+1}$ Isolation criterium	>9	Eff (8,4) > 12066	$<1.0 \times 10^{-7} \%$	1.0	17.6 \%
$\mathbf{8}^{\mathbf{+ 5 + 4 + 3 + 2 + 1}}$ Isolation criterium	> 3	Eff $(8,5)>187$	$<1.0 \times 10^{-7} \%$	1.0	5.9 \%

Conclusion

The proposed cuts:

1. Events with only 2 muons with $\mathrm{PT}^{\mu}>0.6 \mathrm{GeV}, \mathrm{E}^{\mu}>1.0 \mathrm{GeV}$
2. Muons are of the opposite sign
3. $\underline{M}_{\text {inv }}\left(\mu^{+}, \mu^{-}\right)>1.0 \mathrm{GeV}$
4. $\mathrm{PT}^{\mu}{ }_{\text {fast }}>1.5 \mathrm{GeV}$
5. Cut on summarized energy of all detected (without pipe zone and neutrino) particles in event $\mathrm{E}_{\text {sum }}>26.8 \mathrm{GeV}$
6. Isolation criterion $E^{\text {sum }}{ }_{(R \text { isolation }=0.2)}<0.5 \mathrm{GeV}$

Allow (in the ideal case) to suppress Mini-bias bkgd up to $S / B \sim 50$, QCD background - up to S/B >~ 17.

The SPD Collaboration made a decision to suspend the study of such reactions.

In fact, taking into account the detector and additional contributions of muon misidentification,
it will be difficult to experimentally isolate the DY signal from the combinatorial background.

Thank you for your attention!

Back up slides

Intermediate γ^{*} distributions

Without cuts

After cuts

Without cuts

Intermediate $\boldsymbol{\gamma}^{*}$ correlation distributions

After cuts

Доля импульса x, уносимая партонами cms
Q жесткого подпроцесса

2
Q жесткого подпроцесса

Background muons in signal events

53.5 \% of signal events contais >2 muons - up to $8 \mu /$ event

We allow particles decay (and produce muons) in the volume before Muon (Range) System : cylindr radius $\mathrm{R}=2400 \mathrm{~mm}$, size from the centre along Z axis $L=4000 \mathrm{~mm}$ and search for muons in the angle region $9^{\circ}<0<171^{\circ}$

The most probable parents of bkg muons - are charged π and K

The most probable grandparents of bkg muons

- are «string» (Lund model),

$$
{ }_{\rho}^{0}, \rho^{+}, K_{s}^{0}, K^{*}, K^{+}, \eta^{\prime}
$$

NICA Decay muons in signal events

D

Cuts :	$\mathrm{E}>0.8$	$\mathrm{E}>1.0$
exactly	GeV	GeV
2 muons	$\mathrm{PT}>0.4$	$\mathrm{PT}>1.0$
GeV	GeV	

Fraction
2.1\%
0.08\%
of initial
signal
events
with
additional muons
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Fraction } \\ \text { of } \\ \text { remaining }\end{array} & 3.9 \% & 0.3 \% \\ \hline \text { signal }\end{array}\right)$

Another situation when we have exactly 2μ first signal, the second - survived fake one.
We have 2 situations -

1. Muons are of the same sign - easy to cut off
2. Muons are of different signes

After cutting off the events with additional (>2) muons we have

Cuts: exactly 2 muons with opposite signes	$\mathrm{E}>0.8 \mathrm{GeV}$ $\mathrm{PT}>0.4 \mathrm{GeV}$	$\mathrm{E}>1.0 \mathrm{GeV}$ $\mathrm{PT}>1.0 \mathrm{GeV}$		
Reminder of signal events	51.9%		$\mathrm{23.4} \mathrm{\%} 口$	Fraction of initial signal events with fake muons of the same sign
:---				
Fraction of remaining signal events with muons of the same sign				
Reminder of signal events after cut off the events with the muons of the same sign				
Fraction of initial signal events with fake muons of different sign				
Fraction of remaining signal events with muons of different sign				
1.7%				

Processes with charmonium production

 1) $q_{i} q_{j}^{-} \rightarrow \gamma^{*} \rightarrow \mathrm{cc}^{-} \rightarrow \mathrm{J} / \Psi \rightarrow 1^{+} 1^{-}+X$

 1) $q_{i} q_{j}^{-} \rightarrow \gamma^{*} \rightarrow \mathrm{cc}^{-} \rightarrow \mathrm{J} / \Psi \rightarrow 1^{+} 1^{-}+X$}
86) $\mathrm{gg} \rightarrow \mathrm{J} / \Psi+\mathrm{g} \rightarrow \mathrm{l}^{+} \mathrm{l}^{-}+\mathrm{X}$
106) $\mathrm{gg} \rightarrow \mathrm{J} / \Psi+\gamma \rightarrow 1^{+1}+\mathrm{X}$ 421) $\mathrm{gg} \rightarrow \mathrm{cc}^{-}\left[{ }^{3} \mathrm{~S}_{1}{ }^{(1)}\right] \mathrm{g} \rightarrow \mathrm{ll}+\mathrm{X}$ 422) $\mathrm{gg} \rightarrow \mathrm{cc}^{-}\left[{ }^{3} \mathrm{~S}_{1}{ }^{(8)}\right] \mathrm{g} \rightarrow \mathrm{ll}+\mathrm{X}$ 423) $\mathrm{gg} \rightarrow \mathrm{cc}^{-}\left[{ }^{3} \mathrm{~S}_{0}{ }^{(8)}\right] \mathrm{g} \rightarrow \mathrm{ll}+\mathrm{X}$ 424) $\mathrm{gg} \rightarrow \mathrm{cc}^{-}\left[{ }^{3} \mathrm{P}_{\mathrm{J}}{ }^{(8)}\right] \mathrm{g} \rightarrow \mathrm{ll}+\mathrm{X}$ 425) $\mathrm{gq} \rightarrow \mathrm{cc}^{-}\left[{ }^{3} \mathrm{~S}_{1}{ }^{(8)}\right] \mathrm{q} \rightarrow \mathrm{ll}+\mathrm{X}$ 426) $\mathrm{gq} \rightarrow \mathrm{cc}^{-}\left[{ }^{3} \mathrm{P}_{\mathrm{J}}{ }^{(8)}\right] \mathrm{q} \rightarrow \mathrm{ll}+\mathrm{X}$
427) $\mathrm{gg} \rightarrow \mathrm{cc}^{-}\left[{ }^{3} \mathrm{~S}_{1}{ }^{(1)}\right] \mathrm{q} \rightarrow \mathrm{ll}+\mathrm{X}$
428) $\mathrm{qq}^{-} \rightarrow \mathrm{cc}^{-}{ }^{3} \mathrm{~S}^{-18} \underline{\underline{(8)}]} \underline{\mathrm{g}} \rightarrow \mathrm{ll}+\mathrm{X}$ 429) $\left.\mathrm{qq}^{-} \rightarrow \mathrm{cc}^{-}{ }^{1} \mathrm{~S}_{0}{ }^{(8)}\right] \underline{\mathrm{g}} \rightarrow \mathrm{ll}+\mathrm{X}$ 430) $\mathrm{qq}^{-} \rightarrow \mathrm{cc}^{-}\left[{ }^{3} \mathrm{P}_{\underline{I}} \underline{I}^{(8)}\right] \underline{\underline{g}} \rightarrow 11+\mathrm{X}$
R.Baier and R.Rücke, Z.Phys. C19 (1983) 251
M.Drees and C.S.Kim, Z.Phys. C53 (1991) 673

G.T.Badwin, E.Braten and G.P.Lepage, Phys.Rev. D51 (1995) 1125 [Erratum: ibid D55 (1997) 5883];
M. Beneke, MKrämer and M.Vänttinen, Phys.Rev.D57 (1998) 4258;
B.A.Kniehl and J.Lee, Phys.Rev. D62 (2000) 114027

Some signal μ correlation distributions

Θ^{μ} distribution

angle $\left(\mu^{+}, \mu^{-}\right)$distribution

Angle and E, PT for fast and

 slow signal μ correlation distributions

NICA
 Vertex \& angle distributions

angle(mu+, mu-) distribution

π / μ rejection

For 5λ of path length in iron.

Particle momentum

$0.5-1 \mathrm{GeV}$	$\sim 80 \%$ (experiment
	with MS prototype)
$1-1.5 \mathrm{GeV}$	$\sim 90 \%$ (assumption)
$>1.5 \mathrm{GeV}$	$\sim 99 \%$ (assumption)

The path length of a charged particle track inside the sandwich structure serves as one of the most powerful variables for μ / π separation, which is challenging due to the similar rest mass of muon and pion
for $3 \boldsymbol{\lambda}$ path length (+4.9 \% muon misidentification)
for 4λ path length ($+1.8 \%$ muon misidentification)
for $5 \boldsymbol{\lambda}$ path length ($+0.67 \%$ muon misidentification)
$\lambda_{\mathrm{FE}} \sim=17 \mathrm{~cm}$

Cuts separate and summarized efficiency for Open Charm background events (107) Efficiency Eff (K,N) = Nev(cutN) / Nev(cutK)

N of cuts	S/B ratio	Efficiency for BKG	Rest of BKG	Efficiency for SIG	Rest of SIG
1 Exactly 2μ with $\mathrm{P}^{\mu}>0.6 \mathrm{GeV}$, P(E) ${ }^{\mu}>1.0 \mathrm{GeV}$	0.10	Eff $(1$, init $)=\mathbf{4 7 . 1 4}$	2.1 \%	2.45	40.8 \%
$\mathbf{2}^{+1} 2 \mu$ are of the opposite sign	0.12	Eff $(2,1)=1.21$	1.7 \%	1.01	40.5 \%
$3^{+2+1} M_{\text {inv }}(\mu+, \mu-)>1.0 \mathrm{GeV}$	0.14	Eff (3,2) = 1.19	1.4 \%	1.01	40.0 \%
$\underline{4}^{+3+2+1} \mathrm{PT}_{\text {Emax }}>1.5 \mathrm{GeV}$	0.82	Eff $(4,3)=8.77$	$1.7 \times 10^{-1} \%$	1.53	26.2 \%
5^{+3+2+1} Eall $_{\text {sum }}>26.8 \mathrm{GeV}$	263.3	Eff $(5,3)=5401$	$2.7 \times 10^{-4} \%$	2.93	13.6 \%
$6^{+3+2+1} \mathrm{PT}^{\text {all }}{ }_{\text {vecsum }}<0.2 \mathrm{GeV}$	1.18	Eff $(6,3)=\mathbf{1 4 . 3 1}$	$1.0 \times 10^{-1} \%$	1.73	23.1 \%
$7^{+3+2+1} P^{\text {all }}$ vecsum $<0.2 \mathrm{GeV}$	7.04	Eff $(7,3)=131.6$	$1.1 \times 10^{-2} \%$	2.67	15.0 \%
8^{+3+2+1} Isolation criterium	> 20433	Eff (8,3) > 145845	$<1.0 \times 10^{-5} \%$	1.02	39.3 \%
$9^{+3+2+1} R_{\text {vertex }}<1 \mathrm{~mm}$	764.8	Eff $(9,3)=5401$	$2.7 \times 10^{-4} \%$	1.01	39.7 \%
$10^{+3+2+1} R_{\text {vertex }}<30 \mathrm{~mm}$	18.6	Eff (10,3) = 131.6	$1.1 \times 10^{-2} \%$	1.01	39.7 \%
$\overline{5^{+4+3+2+1}}$ Eall $_{\text {sum }}>26.8 \mathrm{GeV}$	1306	Eff $(5,4)=4157$	$4.0 \times 10^{-5} \%$	2.61	10.0 \%
8+4+3+2+1 Isolation criterium	> 13238	Eff $(8,4)>16627$	$<1.0 \times 10^{-5} \%$	1.03	25.4 \%
$8^{+5+4+3+2+1}$ Isolation criterium	> 5178	Eff $(8,5)>4$	$<1.0 \times 10^{-5} \%$	1.01	9.95 \%

