

K_S^0 reconstruction study in SPD

Natalia Rogacheva

LHEP, JINR, Dubna

XXX Anniversary International Seminar Nonlinear Phenomena in Complex Systems

19-23 June 2023

< 1 k

Nuclotron-based Ion Collider fAcility (NICA)

Motivation of study

The ultimate goal is to measure the transverse single-spin asymmetries (SSA) A_N for K_S^0 which are related to

- transversity PDF
- Sivers PDF
- Collins fragmentation function

Measurement of A_N for K_S^0 could help us to study the orbital motion of strange quark inside proton.

K meson

э

Spin Physics Detector and event sample for the K_S^0 analysis

Secondary vertex (V^0) are reconstructed in the detectors: Vertex detector and Straw tracker.

Event sample Generation: Pythia 8, (p+p) at $\sqrt{5}$ =27 GeV, SoftQCD(MB). 4 000 000 events (1 sec of data taking).

Distributions of the V^0 candidates in the Podolanski-Armenteros

Selection criteria

The cuts on the quality of the tracks

•
$$FOM = \frac{N_{sig}}{\sqrt{N_{sig} + N_{bg}}};$$

• This cut selects V^0 events the momentum looking at the PV. $\theta_{coll} < 0.03$ rad. for K_S^0 .

Distance between PV and SV (V0 vertex)

•
$$Dist = \sqrt{(x_{SV} - x_{PV})^2 + (y_{SV} - y_{PV})^2 + (z_{SV} - z_{PV})^2};$$

• This cut selects V^0 which decay close to PV. Dist > 0.7 cm for K_S^0 .

Invariant mass of K_S^0 after all cuts

and background was parametrized by the second order polynomial

The selected V^0 candidates are plated in (p, θ), (x_F , p_T) and (η , p_T) phase space Pure Pythia 8, K_S^0 :

Reconstruction data:

N. Rogacheva (XXXth Seminar NPCS)

 $K_{\rm S}^0$ reconstruction

20 June 2023

10/15

Binning

The choice of the binning scheme is obtained from distribution of K_S^0 simulated in Pythia 8. It was done to have the similar number of K_S^0 in bins $(n_{bin}^{\theta} = 4, n_{bin}^{p} = 10)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Distributions of the K_S^0 candidates with all cuts

Mass and sigma of K_S^0 (in p for fixed θ interval)

K_S^0 reconstruction efficiency with all corrections included (A= $N_{Rec}^{MC}/N_{pythia}^{MC}$)

Total correction factor includes: geometrical acceptance, track and vertex reconstructed efficiency and feed down contribution.

イロト イヨト イヨト イヨト

Conclusion

- Analysis the K_S^0 reconstruction efficiency was performed. This procedure will be further applied for analysis $\Lambda(\bar{\Lambda})$.
- K_S^0 reconstruction efficiency depends on p and θ and in general is about 20%.
- Once the data are collected in a real experiment, they will be used to test and tune the existing MC generators (K_S^0/Λ , $\Lambda/\bar{\Lambda}$ etc).

