

Particle Identification in SPD

Artem Ivanov JINR, Dubna

XXX Anniversary International Seminar Nonlinear Phenomena in Complex Systems Minsk, Belarus,

June 19-23, 2023

NICA – Nuclotron-based Ion Collider fAcility

Particle identification in SPD

In this talks, particle identification via time-of-flight and straw tubes is discussed.

Typical PID approach

For a detector with a Gaussian response

PID detectors

Detector	Signal
Straw tracker	ionization energy loss (dE/dx)
TOF	time of flight

Time-of-Flight system

Parametrization

Fit m^2 distribution in 40 bins of momentum

Pion parametrization

m² vs p

End-Cap Barrel curves with 3 σ *m*² [(GeV/c²)²] *m*² [(GeV/c²)²] 10² 10 0.5 0.5 _____10 1 0 1 *-0.5*[⊥]0 -0.5^{\perp}_{0} 10⁻¹ 1.5 3.5 0.5 2.5 3.5 1.5 2.5 2 3 0.5 2 3 1 $p \; [\text{GeV}]$ $p \; [\text{GeV}]$

n _{sigma} =3	p _{max} (pion/kaon), GeV	p _{max} (kaon/proton), GeV
Barrel	1.2	2.0
End-Cap	1.6	2.7

Straw tracker

Barrel: 31 double layers **End-Cap**: 8 double layers

• Energy loss per unit path length (dE/dx) is described by the Bethe-Bloch formula

Parametrization dE/dx vs p for STRAW

n _{sigma} =3	p _{max} (pion/kaon), GeV	p _{max} (kaon/proton), GeV
Barrel	0.6	1.1
End-Cap	0.45	0.85

Particle identification in SPD

12

PID methods

- 1. Define a cut on $n\sigma < k$, k=1,2,3 in single detector analysis
- 2. Define a multiple-cuts on $n\sigma$ for several detectors
- 3. Define a cut on a combined-n σ variable

$$n \sigma_{comb} = \sqrt{n \sigma_{STRAW}^2 + n \sigma_{TOF}^2}$$
...

- 4. The Bayesian approach:
 - combine information from different PID detectors,

with and without Gaussian responses

Bayes approach

S - a raw signal from a detector S(H_i) - expected average signal for a given species $H_i(\pi, K, p, ...)$

The Bayes theorem

probability that the particle is of species H_i , given \vec{S}

$$P(H_{i}|\vec{S}) = \frac{P(\vec{S}|H_{i})C(H_{i})}{\sum_{k=\pi,K,p} P(\vec{S}|H_{k})C(H_{k})}$$

a posterior probability A priori probability

$$P(S|H_i) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(S-S(H_i))^2}{2\cdot\sigma^2}}$$
One detector

The conditional probability that a particle of species H_i produces a signal *S* (in this case expressed with a Gaussian response)

$$P(\vec{S}|H_i) = \prod_{\alpha = TOF, STAW, \dots} P_{\alpha}(S_{\alpha}|H_i)$$

Many detectors

The conditional probability that a particle of species H_i produces the set of signals

ty for H_i

n-sigma and Bayesian approach for STRAW and TOF

n-sigma: fixed cut -> a constant efficiency

Bayesian: the selection on probability allows to maximize(minimize) efficiency(contamination)

Conclusion

- Methodology for particle identification (pions, kaon and protons) in SPD for straw tracker and time-of-flight system was developed.
- The maximum limits of applicability for particle identification straw tracker and TOF have been determined.

Thank you for your attention