
Deep tracking for
the SPD experiment

Rusov D., Goncharov P., Ososkov G., Zhemchugov A.

Problem Statement

• Particle track reconstruction in dense environments
such as the Run-4 detectors of the CERN High
Luminosity Large Hadron Collider (HL-LHC) as well as
MPD NICA is a challenging pattern recognition
problem.

• To achieve such high luminosity, the particles are not
accelerated individually, but in bunches, so that the
moments of collisions occur so close to each other that the
event tracks overlap strongly.

• For the SPD experiment, in which events are expected to
arrive with a frequency of 3 MHz, the data acquisition is
supposed to be performed in time slices, during one time
slice up to 40 events with overlapping tracks may appear.

• Of the entire stream of events, only a few percent are of
interest to physicists.

2

• Therefore, it is necessary to develop an intelligent online filter to sift out uninteresting
events.

Deep Learning Comes to the Rescue

3

Deep learning algorithms bring a lot of potential to the tracking problem, due to
• their capability to model complex non-linear data dependencies,
• learn effective representations of high-dimensional data through training
• parallelize easily on high-throughput architectures such as GPUs

Neural network

(online)
Kalman filter

(offline)

High recall, low
precision
Very fast

High recall, high precision
Too slow

Reconstructed
event

What we propose for tracking?

SPD Experiment

4

(x2 zoom)
Without cover

Layer, № / tubes, pcs

External view of the SPD straw detector (left) and its module in section (right)

General layout of the SPD
setup

SPD (Spin Physics Detector) – is a future experiment of NICA facility in Dubna. The main goal of the
experiment is to test the foundations of quantum chromodynamics (QCD).
Event data from SPD comes in the form of time slices with a length of 10 ms and about 40 events in time
slice will be produced.
On average there are 200 tracks per time slice and 1100 hits (real and fake) per station.

As an online filter, the algorithm must allow processing over 100 time slices per second.

Events Data Generator

5

Helix

• Generator is a simple Python program.
• Multiplicity in each event is given by a random number from 1 to 10 tracks per event.
• The transverse momentum of a particle is a random number with a uniform distribution in the range of

values from 100 to 1000 MeV/s.
• Vertex coordinates are also random.
• The particle trajectory is represented by a selection of points on a segment of a helix with a helix pitch

and radius .
• Detector configuration with 35 stations is considered.

Local Tracking with TrackNETv3. Model overview

6

TrackNETv3 model

How the model works?
• TrackNETv3 is a model for local track reconstruction.
• Locality – one particular track-candidate during the

prediction phase.
• The model predicts the center and radius of the

sphere where to search for the next hit.
• All hits are placed in the spatial search index (Faiss).
• Only K nearest to the center of sphere hits are

checked (setting K=1 leads to linear computational
complexity).

• Candidate tracks are extended by hits that fall into
sphere.

• Extended track-candidates are fed back to the model
input.

Pros:
• Fast
• Lightweight
• No problems with memory consumption
• Each track can be processed separately in parallel
Cons:
• lot of false positives or so-called ghosts, because of

its local nature of prediction

7

Store all
event hits in

the index

Sphere
predictions
(x, y, z, r)

Sphere centers

(x, y, z)

Check sphere
attendance

1 nearest hits

for each

sphere center

1

2

3

4

5
Prolong candidates

and pass them to the
model

6

As a result
• complexity

depends on
number of stations

• Start predictions
from the 1st hit –
much less ghosts

Local Tracking with TrackNETv3. Inference

Testing Results. Metrics

8

Testing setup:
• 25 000 generated events
• Xeon(R) Gold 6148 CPU @ 2.40GHz
• NVIDIA Tesla V100 32GB
• No tracks with less than 4 hits and

tracks with missing hits

Used metrics:

- - no. real tracks that the network found
- - no. all real tracks known from Monte-Carlo
- - no. all reconstructed tracks

TrackNETv3
(single event)

TrackNETv3
(40 events in timeslice)

Track efficiency (recall) (%) 99,62 96,78

Track purity (precision) (%) 99,52 88,02

Timeslice/sec 34,58 18,46

Testing Results. Time measurement

9

• Brute force algorithm for spatial
search was used

• As the number of points in events
increases, the time needed to
perform a spatial search increases
drastically

• Some other algorithms, like Inverted
File Index, may improve search
speed but require preparation time,
so can’t bring any speed-up. Single event 40 events in timeslice

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Time needed for 1 iteration of model inference
(ms)

Model execution Spatial search
Filtering event hits Prolonging track-candidates

Conclusion and outlook

• Applying the TrackNETv3 model to SPD simulation data showed promising results
in terms of track efficiency and purity.

• Research on handling the tracks with missing hits is needed for SPD data (the
TrackNETv3 model shown good results for processing such tracks for the BM@N
experiment).

• Inference optimization is needed to bring processing speed closer to required
level. It can be done by translation the program to C++ or changing the inference
algorithm, for example, skipping some stations.

• More complex simulation of SPD events is required.

Deep tracking for
the SPD experiment

Rusov D., Goncharov P., Ososkov G., Zhemchugov A.

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11

