

GLUON PHYSICS AT SPD (JINR)

Alexey Guskov (JINR) on behalf of the SPD collaboration

Alexey.Guskov@cern.ch

10.3.2022

THE JOINT INSTITUTE FOR NUCLEAR RESEARCH, DUBNA, RUSSIA

The Joint Institute for Nuclear Research is an international intergovernmental scientific research organization in the science city Dubna of the Moscow region (Russia)

^ະ 10³³ ຮູ້ - 10³² AFTER & LHCspin (LHC, CERN) **SPD (NICA, JINR) SPD & OTHERS** SATURNE II p1-p1 $p - p^{\uparrow}$ Saclay p↑- p↑ **SPASCHARM** 10³¹ (U-70, Protvino) p1-p1 In the $p^{\uparrow}p^{\uparrow}$ mode: PHENIX & STAR 10³⁰ ANKE E704 (RHIC, BNL) (COSY, Julich) (Fermilab) p1-p1 p1-p1 p1-p1 10²⁹ 10²⁸ 10 100 √s, GeV

Experimental	SPD	RHIC	EIC	AFTER	LHCspin
facility	@NICA			@LHC	
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	p^{\uparrow} - p^{\uparrow}	p^{\uparrow} - p^{\uparrow}	$e^{\uparrow}-p^{\uparrow}, d^{\uparrow}, {}^{3}\mathrm{He}^{\uparrow}$	p - p^{\uparrow} , d^{\uparrow}	p - p^{\uparrow}
& polarization	d^\uparrow - d^\uparrow				
	p^{\uparrow} - d, p - d^{\uparrow}				
Center-of-mass	≤27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (<i>ep</i>)	115	115
energy $\sqrt{s_{NN}}$, GeV	≤13.5 (<i>d</i> - <i>d</i>)	500			
	≤19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	~0.1 (<i>d</i> - <i>d</i>)			~10 (<i>p</i> - <i>p</i>)	
Physics run	>2025	running	>2030	>2025	>2025

In the $d^{\uparrow}d^{\uparrow}$ mode we are unique

CONCEPT OF THE SPD PHYSICS PROGRAM

SPD - a universal facility for comprehensive study of polarized gluon content in proton and deuteron at large x

Charmonia

Prompt photons

Open charm

Other physics

Other spin-related phenomena

GLUON PROBES AT SPD

GLUON PROBES AT SPD

not only J/ψ!

Sharp signal Relatively large cross section Model-dependent probability for $c\bar{c} \rightarrow [c\bar{c}]$

Largest cross section Model-de

Challenging experimental requirements Model-dependent fragmentation functions

Almost no fragmentation

Strong background especially at low p_T

KINEMATIC RANGE

Prog.Part.Nucl.Phys. 119 (2021) 103858 arXiv:2011.15005

$\sigma(x_F, p_T)$, vector and tensor angular asymmetries Nonbaryonic content of deuteron: $|6q\rangle = c_1 |NN\rangle + c_2 |\Delta\Delta\rangle + c_3 |CC\rangle$ 10³ $G^{d}(x)$ (GRV98, μ_{F} =1GeV) $G^{p}(x)$ (GRV98, μ_{F} =1GeV) 10² 10 100 × 10⁻¹ Gluon transversity 10⁻³ Phys.Lett. B783 (2018) 287-293 10 $\Delta s = 2$ + 600000 10⁻⁵ G^d(x)/2G^p(x) 1.1 1.05 **Tensor PDFs** A_{++, --} 0.95 Ratio deuteron/proton 0.9 0.2 0.4 0.6 0.8 0 A_{Exy} Sh. Kumano for DY: х 0.1 $x \delta_{T} f(x)$ Fig. 6. Gluon PDF in the deuteron and in the nucleon. $\Delta_T g(x) = \Delta g(x)$ 0.006 Unpolarized $Q^2 = 2.5 \text{ GeV}^2$ 0.004 $O^2 = 30 \text{ GeV}^2$ $x \delta_{T} \overline{u} = x \delta_{T} \overline{d} = x \delta_{T}$ gluons at high x: 0.002 0.01 $x\delta_{x}c=x\delta_{x}\overline{c}$ $q_{T} = 0.2 \text{ GeV}$ $x \delta_{T} g$ -0.002 $\phi = 0$ $q_{x} = 0.5 \text{ GeV}$ y = 0.5 $q_{x} = 1.0 \text{ GeV}$ $x\delta_T u_v = x\delta_T d_v$ -0.004 0.001 70 -0.006 0.01 10 20 30 40 50 60 80 $M_{\mu\mu}^{2}(\text{GeV}^{2})$ 0.1 11 x

... AND DEUTERON

SPD DETECTOR

PHYSICS PERFORMANCE: GLUON PROBES (1 YEAR=10⁷ S)

PHYSICS PERFORMANCE: ACCURACIES

PHYSICS PERFORMANCE: ACCURACIES

IMPACT OF SPD MEASUREMENTS TO THE WORLD DATA FOR $\Delta g(x)$

SPD: PHASE-I

Running with reduced beam energy and luminosity

Physics of Particles and Nuclei v52, p1044–1119 (2021) arXiv:2102.08477

PHYSICS OF THE FIRST STAGE OF **SPD** RUNNING

Non-perturbative QCD

- Spin effects in p-p, p-d and d-d elastic scattering
- Spin effects in hyperon production
- Multiquark correlations
- Dibaryon resonances
- Physics of light and intermediate nuclei collisions
- Exclusive reactions
- > Hypernuclei $dd \rightarrow K^+ K^+ {}^4_{\Lambda\Lambda} n_{,}$
- Open charm and charmonia near threshold

Reduced luminosity and beam energy.

Perturbative QCD

Auxiliary measurements for Dark Matter search in astrophysical experiemnts

 $pp \rightarrow (6q)^* \rightarrow NN Mesons,$

SPD INTERNATIONAL COLLABORATION

31 institutes from 14 countries, ~300 members

The SPD international collaboration is forming actively

SPD CDR was issued in the beginning of 2021: <u>arXiv:2102.00442</u> CDR was approved by the international **Detector Advisory Committee and** the JINR Program Advisory Committee for Particle Physics *First version of the SPD TDR will be presented in 2022* 19

SUMMARY

- ➤ The **Spin Physics Detector** at the NICA collider is a universal facility for comprehensive study of polarized and unpolarized **gluon content of proton and deuteron**; in polarized high-luminosity **p-p** and **d-d** collisions at $\sqrt{s} \le 27$ GeV;
- > Complementing main probes such as charmonia (J/ ψ and higher states), open charm and prompt photons will be used for that;
- SPD can contribute significantly to investigation of

O gluon helicity;

O gluon-induced TMD effects (Sivers and Boer-Mulders);

O unpolarized gluon PDFs at high-x in proton and deuteron;

- **O** gluon transversity in deuteron.
- 0...
- ➤ Comprehensive physics program for the first period of data taking: spin effects in p-p, p-d and d-d elastic scattering, spin effects in hyperon production, multiquark correlations, dibaryon resonances, physics of light and intermediate nuclei collisions, exclusive reactions, hypernuclei, open charm and charmonia near threshold, etc.;
- ➤The SPD gluon physics program is complementary to the other intentions to study the gluon content of nuclei (RHIC, AFTER, LHC-Spin, EIC) and mesons (COMPASS++/AMBER, EIC);
- ► SPD CDR could be found at <u>arXiv:2102.00442</u> for more details;
- ► More information could be found at <u>http://spd.jinr.ru</u> .

BACKUP

.

. . .

POLARIZED BEAMS AT NICA

d↑- was accelerated in 1986 (Synchrophasotron) and 2002 (Nuclotron). It is quite simple procedure: there is just 1 depolarizing spin resonance at 5.6 GeV.

p↑- was first obtained only in 2017.

Source of Polarized Ions: $H^0 \uparrow + D^+ \rightarrow H^+ \uparrow + D^0$ $D^0 \uparrow + H^+ \rightarrow D^+ \uparrow + H^0$

Spin Transparency mode for NICA ring

PHYSICS PERFORMANCE: TRACKING AND VERTEXING

Dimuon mass spectrum fitted with the double Gaussian shape

3

PHYSICS PERFORMANCE: PID

TOF ($\sigma_T = 70 \ ps$)

24

PHYSICS PERFORMANCE: CALORIMETRY

