Gluon structure of hadrons with prompt photons at COMPASS++/AMBER and NICA SPD

Alexey Guskov Joint Institute for Nuclear Research, Dubna, Russia avg@jinr.ru

Ways to access gluon structure of hadron at low energies

prompt-photon production

The most direct way

Hard background

charmonia production

Nice signal

Model-dependent treatment

open-charm production

Rather simple treatment Problematic signal

Production of photons in hadron collisions

Alexey Guskov, Joint Institute for Nuclear Research

Fragmentation photons

Relative contribution of fragmentation photons is below 15% even at much higher energies.

It can be calculated in LO and NLO

Decay photons

Huge background from $\pi^0 \rightarrow 2\gamma$ and $\eta \rightarrow 2\gamma$ decays.

Low p_T — no chance! High p_T — reconstruction of the decays and MC-based subtraction

Experiments with prompt photons at low energies

Experiment	Beam and target	\sqrt{s} , GeV	y range	x_T range
E95 (1979)	p; Be	19.4, 23.75	-0.7 - 0.7	0.15 - 0.45
E629 (1983)	p, π^+ ; C	19.4	-0.75 - 0.2	0.22 - 0.52
NA3 (1986)	p, π^+ , π^- ; C	19.4	-0.4 - 1.2	0.26 - 0.62
NA24 (1987)	p, π^+ , π^- ; p	23.75	-0.65 - 0.52	0.23 - 0.59
WA70 (1988)	p, π^+ , π^- ; p	22.96	-0.9 - 1.1	0.35 - 0.61
E706 (1993)	p, π^- ; Be	30.63	-0.7 - 0.7	0.20 - 0.65
E704 (1995)	p ; p ↑	19.4	< 0.74	0.26 - 0.39
UA6 (1993,1998)	$ar{p}; p$	24.3	-0.2 - 1.0	0.34 - 0.50

Fixed target experiments

Previous results: p-p

7

COMPASS++/AMBER

8

Alexey Guskov, Joint Institute for Nuclear Research

Meson PDFs

GRV (1992) set of pion PDFs: Drell-Yan, charmonia and prompt photon production experiments (**E615**, **NA10, WA70, NA24**).

SMRS (1992): basically the same old data.

JAM (2018) set: production of leading neutrons in DIS at HERA (**ZEUS, H1**).

Kaon PDFs: just 700 kaon-induced DY events at NA3

Prompt photons at COMPASS++/AMBER

 $10 x_{E}$

Expectations

This experiment (100 GeV): 50 pb⁻¹ (1 year) *WA70 (280 GeV):*1.3 pb⁻¹ for π^+ and 3.5 pb⁻¹ for π^-

Prompt photons and other instruments at COMPASS++/AMBER

Main Cor K					Prompt photons	
Cor	hard process (L	$\textbf{0} \qquad q\bar{q} \rightarrow \boldsymbol{l}$	+l- g	$gg \to J/\psi g, q\bar{q} \to J/\psi$	$q(\bar{q})g \rightarrow q(\bar{q})\gamma, \ q\bar{q} \rightarrow \gamma g$	
K	ntent to be tested	valence and	sea quarks	gluons and quarks	gluons and quarks	
	Kinematic range	x _F >	>0	$x_F > 0$	p_T >2 GeV/c	
	Main target	C	, ,	С	LH_2	
Expe	ected statistics, 1	$\begin{array}{c c} 0^6 & \pi : \sim 0.1 \ (conv) \\ (RH) \end{array}$	7), K: ~0.06 F)	π: ~3 (conv), K: ~1 (RF)	π, K (RF) : ~10	
pт	Prompt photons		Different but overlapping			
		DY and charmonia	kinematic ranges		inges	
-1	0	x_F 1				

The NICA collider at JINR, Dubna

Nuclotron-based Ion Collider fAcility in the Joint Institute for Nuclear Research (JINR), Dubna, Russia A-A, d1-d1, p1-p1 (L,T) $\sqrt{s_{pp}} \leq 27 \ GeV$ L_{pp} up to 10³² cm⁻²s⁻²

Two interaction points: MPD -MultiPurpose Detector for heavy ion physics

SPD - **S**pin Physics Detector for physics with polarized beams

NICA construction site

SPD detector (not fixed yet!)

A bit kinematics...

Previous results: pp(pbar)

P. Aurenche, M. Fontannaz, J.-P. Guillet, E. Pilon, and M. Werlen, A New Longstanding critical study of photon production in hadronic collisions, Phys. Rev. D73, 094007 (2006) [hep-ph/0602133]. xi, 70, 71 discrepancy between * WA70 pp fixed-target and INCNLO or JETPHOX UA6 pp !!! $M=\mu=MF=pt/2$ E706 pp / 530 collider data CTEQ6M A=326 MeV E706 pp / 800 !!! frag BFG II !!! UA6 pp 3 **R110 pp R806 pp** 111 √s=26 GeV **AFS pp** PHENIX preliminary pp 0 2 $D0 \overline{p}p$ ▼ CDF pp→γX √s=1.8 TeV 1 0

0.1

0.01

Data / Theory

Nucleon PDFs

DSA with longitudinally polarised beams

SSA with prompt photons

where $q(x_{a,b}, k_{Ta,b})$ and $G(x_{a,b}, k_{Ta,b})$ are quark and gluon distribution functions and $\Delta_N q(x_{a,b}, k_{Ta,b})$

Single spin asymmetries at √s=19.4 GeV

Polarized measurement at FNAL E704

Phys. Lett. B 345 (1995)

Accuracy expected for asymmetries

- decay photons from π⁰, η and other sources
- clusters from neutral hadrons
- double clusters
- clusters from **misidentified charged particles** (5%)
- clusters from photons produced at the setup elements

1 year of data taking (10⁷ s) with $L = 10^{32} cm^{-2} s^{-1}$

No systematics related with luminosity and polarization measurement included.

Summary

- Prompt-photon production is a proven instrument to access polarized and unpolarized gluon content of hadrons.
- All the measurements at energy scale ~20 GeV were performed 20-30 years ago It is a good time to come back with new level of experimental techniques and theoretical understanding.
- Prompt photon production is proposed to be used for the first measurement of gluon distribution in kaon within the COMPASS++/AMBER project (CERN) with 100 GeV positive and negative kaon beams. Due to the system of 3 electromagnetic calorimeters the measurement of the prompt-photon production production cross section could be performed in wide range of x_F and could be combined with the charmonia production results.
- ♦ Prompt-photon production will be used to access gluon polarization and gluon Sivers functions in polarized p[↑]-p[↑] and d[↑]-d[↑] collisions at the Spin Physics Detector (SPD) at the NICA collider (JINR, Dubna, Russia) at √s up to 27 GeV. High luminosity, 4π acceptance of the SPD setup and controlled systematics will allow to access accuracy of A_N and A_{LL} measurement on the level of a few percent.
- You are welcome with theoretical predictions and proposals to extend the experimental program with prompt photons (and not only) of the COMPASS++/ AMBER and NICA SPD projects.

Input from theory for AMBER

Perceiving the Emergence of Hadron Mass through AMBER@CERN kick-off meeting of the initiative took place 11/12/2019, very good attendance COMPASS++ AMBER

Perceiving the Emergence of Hadron Mass through AMBER@CERN

30 March 2020 to 3 April 2020 CERN, Geneve - Switzerland

30 March 2020 to 3 April 2020 CERN Europe/Zurich timezone

Joint CERN TH department and AMBER event, web site will be open by the end of the week

2

Search