

Physics with SPD experiment at NICA Collider

Victor T. Kim

Petersburg Nuclear Physics Institute NRC KI, Gatchina St. Petersburg Polytechnic University

on behalf of the SPD Collaboration

The LXXI International conference "NUCLEUS – 2021. Nuclear physics and elementary particle physics. Nuclear physics technologies"

Main SPD physics goal

Spin Physics Detector (SPD) (http://spd.jinr.ru): a universal particle physics facility at NICA collider.

➡ Main SPD goal:

understanding of the strong interactions using both polarized and unpolarized pp- and dd- collisions at \sqrt{s} up to 27 GeV with high-luminosity.

To this end, it will be studied 3D quark-gluon structure of proton and deuteron with emphasis of gluon PDF and TMDs at high x.

In addition, it will be carried out a comprehensive program, at the initial period of SPD data taking, for a broad range of particle and nuclear physics

Parton distribution function (PDF) Transverse momentum distribution (TMD)

SPD at NICA (JINR, Dubna)

NICA site at JINR, Dubna: May 2021

SPD detector data flow

SPD

No hardware trigger at the SPD detector to avoid a possible bias: 3 MHz event/s at 10³² cm²/s design luminosity 20 GB/s ➡ 3 10³ events/year ➡ 200 PB/year

The SPD setup is a medium scale detector in size, but a large scale one in data rate!

Comparable in data rate with ATLAS and CMS at LHC

"NUCLEUS-2021", St.Petersburg, 20 September 2021 SPD Physics Victor Kim

tor Kim NRC KI - PNPI, Gatchina & SPbPU

J 5

SPD in World landscape of polarized physics

LEC STATE UNIVERSITY	p↑ p	• ↑-mo	de →	- 10 ³³ μ - 10 ³² μ	SAT S	- TURNE II Saclay ↑- p↑	SPD (NICA, p1− p	, JINR) ↑	AFTER & LHCspin (LHC, CERN) p - p1	
	ppţpţ				SPASCHARM J-70, Protvino p↑– p↑ ANKE (COSY, Julich) p↑– p↑		E704 (Fermilab) p1 – p1		PHENIX & STAR (RHIC, BNL) p↑- p↑	
				10 ²⁸			10		100	√s, GeV
Experimental	SPD	RHIC	EIC	AFTER	LHCspin					
facility	@NICA			@LHC						
Scientific center	JINR	BNL	BNL	CERN	CERN					
Operation mode	collider	collider	collider	fixed target	fixed target					
Colliding particles & polarization	$p^{\uparrow}-p^{\uparrow}$ $d^{\uparrow}-d^{\uparrow}$ $p^{\uparrow}-d, p-d^{\uparrow}$	$p^{\uparrow} - p^{\uparrow}$	$e^{\uparrow}-p^{\uparrow}, d^{\uparrow}, {}^{3}\mathrm{He}^{\uparrow}$	p - p^{\uparrow} , d^{\uparrow}	$p \cdot p^{\uparrow}$	+ S	SPD is d^{\uparrow}	<i>d</i> î miq û	e in d↑ d↑	-mode!
Center-of-mass energy $\sqrt{s_{NN}}$, GeV	$\leq 27 (p-p)$ $\leq 13.5 (d-d)$ $\leq 19 (p-d)$	63, 200, 500	20-140 (ep)	115	115					
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7					
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	~0.1 (<i>d</i> - <i>d</i>)			~10(<i>p</i> - <i>p</i>)						
Physics run	>2025	running	>2030	>2025	>2025					

"NUCLEUS-2021", St.Petersburg, 20 September 2021 SPD Physics Victor Kim

NRC KI - PNPI, Gatchina & SPbPU

6

SPD project timeline

- **2007 Idea of SPD project is included to NICA activities at JINR**
- **2014 SPD Letter of Intent is approved by JINR PAC**

2016, 2018 SPD-oriented workshops in Prague

- 2019 SPD project is approved by JINR PAC (up to 2022) The 1st SPD proto-Collaboration meeting
- 2020 Completion of SPD Conceptual Design Report http://arxiv.org/abs/2102.00442 Two SPD-physics papers were submitted for publication
- 2021 SPD Collaboration is established Preparation of SPD Technical Design Report is started

2025+ Start of SPD operation

SPD Collaboration: established in July 2021

Spin Physics Detector

The NICA-SPD Collaboration, July 2021

Armenia Belarus Chile China Cuba Czechia Egypt France Italy Poland Russia Serbia South Africa Ukraine

 \star

33 laboratories and individual contributors from 14 countries ~ 300 participants

SPD Physics highlights

Spin Physics Detector (SPD) at NICA (http://spd.jinr.ru): a universal setup for comprehensive study of polarized and unpolarized gluon content of proton and deuteron in polarized and unpolarized high-luminosity pp- and dd- collisions at √s ≤ 27 GeV

Complementing main probes: charmonia (J/Psi, higher states), open charm and direct photons in inclusive and semi-inclusive modes

- **SPD** can reveal significant insights on:
- gluon helicity structure
- unpolarized gluon PDF at high x in proton and deuteron
- gluon transversity in deuteron

Comprehensive physics program for the initial period of data taking (can be performed even at reduced energy and luminosity)

Progress in Particle and Nuclear Physics Volume 119, July 2021, 103858

Review

On the physics potential to study the gluon content of proton and deuteron at NICA SPD

A. Arbuzov^a, A. Bacchetta^{b, c}, M. Butenschoen^d, F.G. Celiberto^{b, c, e, f}, U. D'Alesio^{g, h}, M. Deka^a, I. Denisenko^a, M.G. Echevarriaⁱ, A. Efremov^a, N.Ya. Ivanov^{a, j}, A. Guskov^{a, k} $\stackrel{\sim}{\sim}$ $\stackrel{\boxtimes}{\sim}$, A. Karpishkov^{I, a}, Ya. Klopot^{a, m}, B.A. Kniehl^d, A. Kotzinian ^{j, o}, S. Kumano ^p, J.P. Lansberg ^q, Keh-Fei Liu ^r, F. Murgia ^h, M. Nefedov ^I, B. Parsamyan ^{a, n, o}, C. Pisano ^{g,} ^h, M. Radici ^c, A. Rymbekova ^a, V. Saleev ^{I, a}, A. Shipilova ^{I, a}, Qin-Tao Song ^s, O. Teryaev ^a

Possible studies at the first stage of the NICA collider operation with polarized and unpolarized proton and deuteron beams

to appear in Phys. Elem. Part. At. Nucl. 2021 V. V. Abramov¹, A. Aleshko², V. A. Baskov³, E. Boos², V. Bunichev², O. D. Dalkarov³, R. El-Kholy⁴, A. Galoyan⁵, A. V. Guskov⁶, V. T. Kim^{7,8} D. Darkarov⁻¹, R. El-Khory⁻¹, A. Garoyan⁻¹, A. V. Guskov⁻¹, V. T. Kim⁻¹
E. Kokoulina^{5,9}, I. A. Koop^{10, 11, 12}, B. F. Kostenko¹³, A. D. Kovalenko⁵,
V. P. Ladygin⁵, A. B. Larionov^{14, 15}, A. I. L'vov³, A. I. Milstein^{10, 11},
V. A. Nikitin⁵, N. N. Nikolaev^{16, 26}, A. S. Popov¹⁰, V.V. Polyanskiy³,
J.-M. Richard¹⁷, S. G. Salnikov¹⁰, A. A. Shavrin^{7, 18}, P. Yu. Shatunov^{10, 11},
Yu. M. Shatunov^{10, 11}, O. V. Selyugin¹⁴, M. Strikman¹⁹,
E. Tomasi-Gustafsson²⁰, V. V. Uzhinsky¹³, Yu. N. Uzikov^{6, 21, 22, *}, Qian Wang²³, Qiang Zhao^{24, 25}, A. V. Zelenov⁷

Decays of Higgs bosons in the S Progress in Particle and Nuclear Phys

ArXiv e-Printiear response theprexith finit

Progress in Particle and Nuclear Phys

PDF

Casimir force on a light front

Progress in Particle and Nuclear Phys

PDF

ArXiv e-Print: 2102.08477 [hep-ph]

Captures

Citation Indexes:

Citations

Readers:

"NUCLEUS-2021", St.Petersburg, 20 September 2021 SPD Physics Victor Kim NRC KI - PNPI, Gatchina & SPbPU 10

JINR E2-2021-12

SPD: towards 3D-structure of nucleon

Parton Distribution Functions (PDFs): 1D → 3D

Parton 1D-distribitions: Integrated over kT PDF: f(x; logQ²)

modulo logQ² - DGLAP evolution

Extension to parton 3D-distribitions:

Generalized parton distributions (GPDs): G(x, b, n; logQ²) b - impact parameter, n – unit vector

- Unintegrated over kT PDF: Φ(x, kT, n; logQ²) (two theory approaches):
 - Unintegrated collinear PDF (uPDF)
 - Transverse momentum distribution (TMD)

TMD: quarks in polarized nucleon

Nucleon (N) with momentum P and spin polarization S=(U,L,T)

New information in quark TMD of nucleon: $\Phi^q(x, P, S)$

 Φ^q(x, P, S) contains time-even functions:
 f^q(x, kT) ← unpolarized quarks in unpolarized N ← density
 g^g_L(x, kT) ← L-polarized (chiral) quarks in L-polarized N ← helicity
 g^g_T(x, kT) ← L-polarized (chiral) quarks in T-polarized N ← worm-gear
 h^q_T(x, kT) ← T-polarized quarks in T-polarized N ← pretzelocity

and time-odd functions (spin-orbital correlations): $f^{\perp g}_{L}(x, kT) \leftarrow$ unpolarized quarks in T-polarized N \leftarrow Sivers f. $h^{\perp q}_{T}(x, kT) \leftarrow$ T-polarized quarks in unpolarized N \leftarrow Boer-Mulders f.

Integrated over kT quark TMDs: $f^{q}(x) = q(x) = q_{L=+}(x) + q_{L=-}(x)$ $g^{q}_{L}(x) = \Delta q(x) = q_{L=+}(x) - q_{L=-}(x) \leftarrow helicity (chirality)$ $h^{q}_{T}(x) = \delta q(x) = q_{T=+}(x) - q_{T=-}(x) \leftarrow transversity$

TMDs: quarks in nucleon

Gluon TMD with SPD

🖗 Gluon probes at SPD: charmonia, open charm, direct photons 🌘

PDF kinematic range

NNPDF Coll.: quark and gluon helicity PDFs of proton

Gluon transversity of deuteron:

"NUCLEUS-2021", St.Petersburg, 20 September 2021 SPD Physics Victor Kim

Helicity gluon PDF Δg(x): Spin Crisis

0.3

0.2

0.1

EIC

Gluon TMD effects: gluon Sivers function

Sivers effect: L-R asymmetry of unpolarized kT-distribution in T-polarized nucleon

Collins effect: due to fragmentation of polarized parton

Guon Sivers function

... and at NICA energies (fixed target at FNAL)

E704 at FNAL: fixed target 200 GeV

Phys. Lett. B 345 (1995)

Gluon induced TMD effects: existing results for A_N

Sivers effect impact

SPD Physics at the initial stage

V.V. Abramov et al., to appear in PEPAN, JINR E2-2021-12, e-Print: 2102.08477 [hep-ph]

Comprehensive and rich physics program at the initial stage of SPD data taking:

- Spin effects in pp-, pd- and dd- (quasi)elastic scattering
- Spin effects in hyperon production
- Multiquark correlations (SRC) in deuteron and light nuclei
- Dibaryon resonances

. . .

- Hypernucleus production
- Open charm and charmonia production near threshold
- Large-pT hadron production to study diquark structure of proton
- Semi-inclusive large-pT hadron production to study multiparton scattering
- Antiproton production measurement for astrophysics and BSM search

Summary

Spin Physics Detector (SPD), a universal setup at NICA (http://spd.jinr.ru): for comprehensive study of polarized and unpolarized gluon content of proton and deuteron in polarized and unpolarized high-luminosity pp- and dd- collisions at √s up to 27 GeV

Complementing main probes: charmonia (J/Psi, higher states), open charm and direct photons

- SPD can reveal significant insights towards 3D gluon structure:
- gluon helicity structure
- unpolarized gluon PDF at high x in proton and deuteron
- gluon transversity in deuteron
- Comprehensive and rich physics program for the fist period of data taking

- SPD physics program is complementary to the other intentions to study gluon content of nuclei (RHIC, AFTER@LHC, LHC-spin, EIC) and mesons (COMPASS++/AMBER, EIC)

- SPD CDR: arXiv:2102.00442
- SPD physics:

A. Arbuzov et al., Prog. Part. Nucl.Phys. 119 (2021) 103858 e-Print: 2011.15005 [hep-ex] V.V. Abramov et al., to appear in PEPAN, JINR E2-2021-12, e-Print: 2102.08477 [hep-ph]