

Application of BM@N Simicrostrip detectors at muon stand for testing straw detectors

<u>Topko B.L</u>, Burtsev V.E., Enik T.L., Ivanov A.V., Kopylov Yu.A., Khabarov S.V., Martovitsky E.V., Makankin A.M., Tarasov O.G., Zamyatin N.I.

LXX International conference "NUCLEUS – 2020. Nuclear physics and elementary particle physics. Nuclear physics technologies"

13 October 2020

- Motivation
- Muon stand setup
- BM@N Silicon Detector Module design
- Events reconstruction
- Tracking performance
- First straw detectors testing results
- Conclusions

Motivation

After BM@N technical run in spring 2018, the first physical stage of the experiment will begin in 2021. For stop time Silicon tracking modules of BM@N Forward Silicon Detector are applied at muon stand to test and measure R-t characteristics of straw detectors (6 mm diameter, produced by JINR, Dubna) by reconstructing cosmic rays tracks (based on bmnroot software).

Muon stand setup

Cooling system 1st Scintillation trigger (150x150 mm²) – - 1st Silicon Tracking Detector Station

- 2nd Silicon Tracking Detector Station
- 2 straw detectors testing planes
- 3^d Silicon Tracking Detector Station _____

3^d Scintillation trigger (400x400 mm²) –

Assembled muon stand (October 2019)

3D Model of muon stand

LXX International conference "NUCLEUS – 2020", 13 October 2020

BM@N Silicon detector module design

run March 2018 [M.Kapishin , Status of Baryonic Matter at Nuclotron, October 2018]

ASIC VATAGP7.1 (5 chips on each side of module)

Number of CSA: 128 channels Dynamic range: ±30 fC Peaking time (slow/fast shaper): 500 ns/ 50ns ASIC noise (ENC): 70e +12e/pF (typ.) Voltage supply: +1.5 V, -2.0 V Gain from input to output buffer: 16.5 µA/fC Output Serial analog multiplexer clock speed: 3.9 MHz Power dissipation per channel: 2.2 mW

Pitch Adapter (n+) side

sapphire plates with Si-epitaxial layer Silicon On Insulator (SOI)

Number of channels: 640

Value of poly-Si resistors: $\approx 1 \text{ M}\Omega$

Value of integrated capacitors: $\approx 120 \text{ pF}$

Capacitor working voltage: 100 V

Capacitor breakdown voltage: >150 V

Size: $63x63x0,3 \text{ mm}^3$ (on 4" – FZ-Si wafers) Topology: double sided microstrip (DSSD) (DC coupling) Pitch p⁺ strips: 95 µm; Pitch n⁺ strips 103 µm; Stereo angle between p⁺/n⁺ strips: 2.5⁰ Number of strips/DSSD: 640 (p⁺)× 614(n⁺) Number of strips/module: 640 (p⁺)× 640(n⁺)

Events reconstruction

- a) Hits plots in BM@N Simodules;
- b) Reconstructed track in muon stand (based on bmnroot framework);
 c) BM@N Silicon
- modules;

Tracking performance

Amplitude distribution after noise cut (for 640 strips) of module #1 p+ (left) and n+ (right) sides 1st Silicon Tracking Detector Stations at Run #671 April 2019 (without Lead shield – no low-energy particle filtering);

Tracking performance

Amplitude p+/n+ strips correlation plots of 1st (left) 2nd (center) and 3^d (right) Silicon Tracking Detector Stations at Run #671 April 2019 (without Lead shield – no low-energy particle filtering);

Tracking performance

performance with different energy

real track

real track

Si station #	σ_X , μm	σ_Y , μm
1	66.9	498.6
2	112.9	839.4
3	46.9	347.4

X (left) end Y (right) residual distributions of 1st Silicon Tracking Detector Station at Run #671 April 2019

(Track fitted with straight line => multiple Coulomb scattering wasn't take into account)

First straw detectors testing results

Time distribution (up), R-T distributions (center) and straw detector position projection on Silicon hit plot (down) for central tubes (30th, 31th, 32th and 33th) $V_{HVStraw}$ = 1960 V with different pressure: 1 bar (left, Run# 671 April 2019) and 1.6 bar (right, Run #676 May 2019)

LXX International conference "NUCLEUS - 2020",

13 October 2020

First straw detectors testing results

R-T distributions (up) and its profiles (down) for all straw-detectors in triggering zone (from 10th to 50th tubes) with different pressure: 1 bar (left, Run# 671 April 2019) and 1.6 bar (right, Run #676 May 2019)

Conclusions and plans

Conclusions:

- First version of cosmic muon stand for testing straw detectors based on external BM@N Si detector tracking system – designed and produced;
- Software for track reconstruction is developed based on bmnroot framework;
- BM@N Silicon detector allow to detect coordinate and amplitude of m.i.ps signals;
- Average resolution of BM@N Si stations for X coordinate (parallel to straw detectors anode wire) is 75.6 µm it's bigger than $\frac{pitch_{p+}}{\sqrt{12}}$ =27.4 µm, because measurements made without low-energy particle filtering;
- First straw detector testing results (Time and R-T distributions) are obtained at different pressure;

Plans:

- Add new tracking detectors to increase measurement accuracy;
- Add calorimeter to scan trigger events by energy;
- Collect more data to build R-T for each straw detector (more 3000 trigger events per tube);
- Update reconstruction and online-monitoring programs.

Backup slides

LXX International conference "NUCLEUS – 2020", 13 October 2020

