

Spin Physics Detector at NICA as a universal facility for study of polarized and unpolaried gluon content of proton and deuteron.

A. Guskov (DLNP, JINR) on behalf of the working group: A. Arbuzov, I. Denisenko, A. Efremov, A. Guskov, N. Ivanov, Ya. Klopot, A. Kotzinian, M. Nefedov, B. Parsamyan, A. Rymbekova, A. Shipilova, V. Saleev, O. Teryaev

THE NICA PROJECT AT JINR

Nuclotron-based Ion Collider fAcility in the Joint Institute for Nuclear Research (JINR), Dubna, Russia

Two interaction points: **MPD** -**M**ultiPurpose Detector for heavy ion physics **SPD** - **S**pin Physics Detector for physics with polirized beams

SPD – **EXPERIMENTAL** CONDITIONS

Beam energies: $p\uparrow p\uparrow (\sqrt{s_{pp}}) = 12 \div \ge 27 \text{ GeV} (5 \div \ge 12.6 \text{ GeV of proton kinetic energy}),$ $d\uparrow d\uparrow (\sqrt{s_{NN}}) = 4 \div \ge 13.8 \text{ GeV} (2 \div \ge 5.9 \text{ GeV/u of ion kinetic energy}).$

Unique possibility!

All combinations of collisions are possible -UU, LL, TT, UL, UT, LT

SPD – VS OTHER POLARIZED **p**-**p** EXPERIMENTS

SPD – VS OTHER N–N EXPERIMENTS

DRELL-YAN – FORMER KEY POINT OF THE SPD PHYSICS PROGRAM

In spite of very competitive DY physics program we will not be able to extract experimentally the DY signal from combinatorial background.

WHY GLUONS?

Without DY we cannot compete with SIDIS experiments in the study of the quark content of the nucleon

SIDIS

 $\sigma \sim \alpha^2 \alpha_{\rm c}$

Hadroproduction

 $\sigma \sim \alpha_{\rm s}^2$

GLUON PROBES AT SPD

Sharp signal Relatively large cross section

Largest cross section

Model-dependent probability for $c\bar{c} \rightarrow J/\psi$

Challenging experimental requirements Model-dependent fragmentation functions

Almost no fragmentation

Strong background at low PT

GLUON PROBES AT SPD

EXPECTED STATISTICS AFTER 1 YEAR OF DATA TAKING (107 s)

	$\sigma_{27GeV},$	$\sigma_{13.5 GeV},$	N_{27GeV} ,	$N_{13.5GeV}$
Probe	$nb (\times BF)$	nb $(\times BF)$	10^{6}	10 ⁶
$\boxed{\text{Prompt-}\gamma ~(p_T > 3 ~\text{GeV/c})}$	35	2	35	0.2
$J/\psi \rightarrow$	200	60		
$\mu^+\mu^-$	12	3.6	12	0.36
$\psi(3686) \rightarrow$	25	5		
$J/\psi\pi^+\pi^- \to \mu^+\mu^-\pi^+\pi^-$	0.5	0.1	0.5	0.01
$\mu^+\mu^-$	0.2	0.04	0.2	0.004
Open charm: $D\bar{D}$ pairs	1×10^{4}	1300	40	0.6
Single <i>D</i> -mesons				
$D^+ ightarrow \pi^+ K^- \pi^+$	940	120	940	12
$D^0 \rightarrow K^- \pi^+$	400	52	400	5.2

Drell-Yan (M>4 GeV) ($\mu\mu$) 0.1 0.005 0.1 0.0005

WHAT SPD HAS FOR OPERATION WITH SUCH PROBES?

MAIN PLAYERS IN POLARIZED GLUON PHYSICS

SPD can cover this range for polarised gluon studies in p\-p\ interactions!

Open charm

charmonia

high-p_T prompt photons

MAIN PLAYERS IN POLARIZED GLUON PHYSICS

.

Experimental	SPD	RHIC	EIC	AFTER
facility	@NICA			@LHC
Scientific center	JINR	BNL	BNL	CERN
Operation mode	collider	collider	collider	fixed
				target
Colliding particles	p^\uparrow - p^\uparrow	$p^{\uparrow} - p^{\uparrow}$	$e^{\uparrow} A^{\uparrow}$	p - $p^{\uparrow},d^{\uparrow},\mathrm{A}$
& polarization	$d^{\uparrow} - d^{\uparrow}$			
Center-of-mass	$\leq 27~(p-p)$	63, 200,	20-140~(ep)	115
energy \sqrt{s} , GeV	$\leq 13.5 \ (d-d)$	500		
Max. luminosity,	$\sim 1 \ (p-p)$	2	1000	up to
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	$\sim 0.1 (d-d)$			$\sim 10 \ (p-p)$
Physics run	>2025	running	>2030	>2025

OTHER PROBES ?

There is no detailed studies for our energies but we will have sizable statistics at SPD for surg₄

GLUON PDFs

UNPOLARIZED GLUONS IN PROTON AT HIGH x

GLUON HELICITY FUNCTION $\Delta g(x)$: SPIN CRISIS

 $S_{N} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$

GLUON HELICITY FUNCTION $\Delta g(x)$

GLUON HELICITY FUNCTION $\Delta g(x)$

SPD could help to reduce uncertainty of ΔG at large x

GLUON HELICITY FUNCTION $\Delta g(x)$: How to access?

×

Double longitudinal spin asymmetry:

GLUON HELICITY FUNCTION $\Delta g(x)$: EXISTING RESULTS FOR A_{LL}

GLUON HELICITY FUNCTION $\Delta g(x)$: EXPECTATIONS

GLUON-INDUCED TMD EFFECTS : TWO APPROACHES

Collinear factorization + three-parton correlations in twist-3
 TMD factorization

GLUON-INDUCED TMD EFFECTS : GLUON SIVERS FUNCTION Δ_N^g (x,k_T)

$$\sigma^{\uparrow} - \sigma^{\downarrow} = \sum_{i} \int_{x_{min}}^{1} dx_{a} \int d^{2}\mathbf{k}_{Ta} d^{2}\mathbf{k}_{Tb} \frac{x_{a}x_{b}}{x_{a} - (p_{T}/\sqrt{s}) \ e^{y}} \left[q_{i}(x_{a}, \mathbf{k}_{Ta})\Delta_{N}G(x_{b}, \mathbf{k}_{Tb}) \right. \\ \left. \times \frac{d\hat{\sigma}}{d\hat{t}}(q_{i}G \to q_{i}\gamma) + G(x_{a}, \mathbf{k}_{Ta})\Delta_{N}q_{i}(x_{b}, \mathbf{k}_{Tb}) \frac{d\hat{\sigma}}{d\hat{t}}(Gq_{i} \to q_{i}\gamma) \right]$$

$$(24)$$

GLUON SIVERS FUNCTION Δ_N^g (x,k_T)

 $\Delta^{N_{f_{g}}^{(1)}(x)}$

0.1

0.01

0.001

0.0001

DSS-SIDIS2

0.1

х

0.01

х

25

GLUON-INDUCED TMD EFFECTS : EXISTING RESULTS FOR A_N

GLUON-INDUCED TMD EFFECTS : EXISTING RESULTS FOR A_N

GLUON-INDUCED TMD EFFECTS: EXPECTATIONS FOR A_N

Sivers effect contribution

GLUON-INDUCED TMD EFFECTS : BOER-MULDERS FUNCTION $h_1 \perp g(x, k_T)$

$$gg \to D\bar{D}, \gamma\gamma, J/\psi\gamma, \ldots$$

d

The hadronic cross section can be written with corrections of order $\mathcal{O}(\infty/S)$ in the form [D. Boer, P. Mulders, C. Pisano, 2008]

$$\begin{split} \frac{d\sigma(pp \to D\bar{D}X)}{\eta_1 d\eta_2 d^2 k_{1T} d^2 k_{2T}} &= \frac{\alpha_S}{SK_T^2} \bigg[A(Q_T^2) + B(Q_T^2) Q_T^2 \cos 2(\phi_T - \phi_\perp) + \\ &+ C(Q_T^2) Q_T^4 \cos 4(\phi_Q - \phi_K) \bigg] \\ \vec{Q}_T &= \vec{k}_{1T} + \vec{k}_{2T}, \qquad \vec{K}_T = (\vec{k}_{1T} - \vec{k}_{2T})/2 \end{split}$$

$$egin{aligned} A : & f_1^q \otimes f_1^{ar{q}}, \ f_1^g \otimes f_1^g, \ B : & h_1^{\perp \, q} \otimes h_1^{\perp \, ar{q}}, \ rac{M_Q^2}{M_\perp^2} f_1^g \otimes h_1^{\perp \, g}, \ C : & h_1^{\perp \, g} \otimes h_1^{\perp \, g} \ . \end{aligned}$$

 $h_1^{\perp g} < 0$

UNPOLARIZED GLUONS IN DEUTERON AT HIGH x

Fig. 6. Gluon PDF in the deuteron and in the nucleon.

GLUON TRANSVERSITY **Agt(x)** IN DEUTERON

asymmetry!

p_T [GeV]

COMPLEMENTARITY OF STUDIES AT SPD AND MPD AT NICA

SUMMARY

.

Physics goal	Observable	Experimental conditions
Gluon helicity $\Delta g(x)$	A_{LL} asymmetries	p_L - p_L , $\sqrt{s} = 27 \text{ GeV}$
Gluon Sivers PDF $\Delta_N^g(x, k_T)$,	A_N asymmetries,	p_T - $p, \sqrt{s} = 27 \text{ GeV}$
Gluon Boer-Mulders PDF $h_1^{\perp g}(x, k_T)$	Azimuthal asymmetries	p - $p, \sqrt{s} = 27 \text{ GeV}$
TMD-factorization test	Diff. cross sections,	p_T - p , energy scan
	A_N asymmetries	
Unpolarized gluon		d- d , p - p ,
density $g(x)$ in deuteron	Differential	$\sqrt{s_{NN}} = 13.5 \text{ GeV}$
Unpolarized gluon	cross sections	p- p ,
density $g(x)$ in proton		$\sqrt{s} \le 20 \text{ GeV}$
Gluon transversity $\Delta g_T(x)$	A_{TT} asymmetries	$d_T - d_T, \sqrt{s_{NN}} = 13.5 \text{ GeV}$

SUMMARY: SPD PHYSICS PROGRAM

The SPD Conceptual Design Report should be ready till the end of the year

SUMMARY

- ➤ The **Spin Physics Detector** at the NICA collider is a universal facility for comprehensive study of polarized and unpolarized **gluon content of proton and deuteron**; in polarized high-luminosity **p-p** and **d-d** collisions at $\sqrt{s} \le 27 \text{ GeV}$
- > Complementing main probes such as charmonia (J/ ψ and higher states), open charm and prompt photons will be used for that;
- SPD can contribute significantly to investigation of

O gluon helicity;

O gluon-induced TMD effects (Sivers and Boer-Mulders);

O unpolarized gluon PDFs at high-x in proton and deuteron;

- O gluon transversity in deuteron.
- O ... something else, please, propose!

➤ The SPD gluon physics program is complementary to the other intentions to study the gluon content of nuclei (RHIC, AFTER, EIC) and mesons (COMPASS++/AMBER, EIC).

- On the physics potential to study the gluon ² content of proton and deuteron at NICA SPD
- ₄ list of authors and contributers

Abstract 5

6 tigate the nucleon spin structure in collisions of longitudinally and transversely polarized protons 7 and deuterons at \sqrt{s} up to 27 GeV and luminosity up to 10^{32} cm⁻² s⁻¹. It will operate as a 8 universal facility for comprehensive study of unpolarized and polarized gluon content in the pro-9 ton and deuteron. Such complementing probes as charmonia, open charm and prompt-photon 10 production processes will be used for that. Possible physics tasks such as the access to the 11 gluon helicity, gluon Sivers and Boer-Mulders function and gluon transversity in the deuteron 12 via the measurement of single and double spin asymmetries and other gluon-related tasks will 13 be discussed. 14