SPD Magnetic System

A.KOVALENKO

JINR, Dubna, June 22.06.2020

OUTLINE

- Introduction: previous versions 2018-2019
- Current status of the setup composition
- Scheme of the MS
- Magnetic field calculations
- Summary
- Near future tasks

previous versions 2018-2019 (1)

Spin Physics at NICA Workshop, Prague, 09-13 July, 2018

- universality
- minimal influence on beam particles spin
- minimization the MS material inside SPD
- field integral of (1-2) T[•]m along the track
- minimization of the SPD weight and sizes

Seven options were discussed:

- Solenoid (placed outside ECal);
- Toroid (inside ECal): 1) barrel part,
 2) barrel+2 end parts, 3) warm coils, 4) superconducting coils;
- 4 separate coils inside the ECal;
- Combination of the toroid and 2 pairs of the coils inside the ECal.

previous versions 2018-2019 (2)

SC solenoid out of detectors,

- Bmax = 0.66T;
- Cryostat: length 8270 mm outer diam. - 5963 mm
- Trim coils (warm)

previous versions 2018-2019 (2a)

MPD setup

Toroidal Magnetic System

Technical complexity is high. Material budget? Nevertheless ...

A.D.Kovalenko

SPD Meeting, JINR, Dubna 22 June 2020

Separate Solenoid Coils

4 coils, Feb. 2018

SPD magnet version

6 coils, Sept. 2018

A.D.Kovalenko

Combined: Toroid+ Coils

A.D.Kovalenko

SPD MS: Nuclotron/ITER technology

Dubna hollow SC cable

NICA booster magnets

Operating current – 10 kA Critical current -17 kA

- OPERATING TEMPERATURE 4.5 K
- COLD MASS WEIGHT 80 t
- COOLDOWN TIME 85 h
- PERIMETER 251.5 m
- 96 DIPOLES: B = 2 T, 1. 4 m
- 64 QUADRUPOLES: 31 T/m, 0.4 m

GSI DIRECTORATE AT LHE

CERN DIRECTORATE VISITING NUCLOTRON

CICC for ITER

We have unique technology and technological base for manufacturing SPD MS model coils at the LHEP.

SPD MS: Nuclotron technology

We have unique technology and technological base for manufacturing SPD MS coils at the LHEP that could save the expenses.

Updated setup composition

O.Gavrischyuk version, May 2020

SPD Meeting, JINR, Dubna 22 June 2020

Scheme of the new MS

The model and further calculations by Eugeny Perepelkin

Results of calculations (1)

Total |B| field RZ-distribution, [T]

Results of calculations (2)

A.D.Kovalenko

SPD Meeting, JINR, Dubna 22 June 2020

Results of calculations (3)

SPD Meeting, JINR, Dubna 22 June 2020

A.D.Kovalenko

Summary & Near Future Tasks

- The first set of 3D calculations taken new sizes of the 6 coil MS SPD was performed;
- The field data can be rescaled to other level linearly.
- Optimization of the coil positions and coil cross sections will be continued;
- Preparation of technical design including integration of the coil system into the SPD is considered as the next important step.
- ٠

THANK YOU FOR YOUR ATTENTION

Requirements to the facility in polarized mode

polarized and non-polarized p-; d-collisions **p**(p) at $\sqrt{S_{DD}} = 12 \div 27 \text{ GeV} (5 \div 12.6 \text{ GeV kinetic energy})$ □ $d\uparrow d\uparrow (d)$ at $\sqrt{S_{NN}} = 4 \div 13$ GeV (2 ÷ 5.5 GeV/u kinetic energy) □ $L_{average} \approx 1.10E32 \text{ cm}^{-2}\text{s}^{-1}$ (at $\sqrt{s_{pp}} \geq 27 \text{ GeV}$) sufficient lifetime and degree of polarization Iongitudinal and transverse polarization in MPD/SPD asymmetric collision mode, **pd**, should be possible

A.Kovalenko, Baldin seminar, Dubna, September 2016

NICA collider scheme within the straights

Южный промежуток (SPD)

polarization control equipment

ì