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Introduction to KinFit

What is it needed for?

p

Pbeam

p

At least two hypotheses:

I pp→ pp

I pp→ ppπ0

Conservation laws should be used to select the correct hypothesis!
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Problem formulation

Find kinematical parameters Xi that turn χ2 to the minimum

χ2 =

np,np∑
k=1,j=1

(Xi −Xm
i )Zi,j(Xj −Xm

j )

and satisfy the conservation law equations (constraints)

fλ(X) = 0; λ = 1 . . . nc.

X vector of kinematical parameters Xi;

np their number;

Zi,j inverse error matrix;

Xm
j measured values of parameters;

nc number of conservation law equations.
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History

χ2 =

np,np∑
k=1,j=1

(Xi −Xm
i )Zi,j(Xj −Xm

j ) (1)

fλ(X) = 0; λ = 1 . . . nc (2)

[1] J.P. Berge, F.T. Solmitz and H.D. Taft, Rev. Sci. Instr. 32 538
(1961);

[2] R. Bock, CERN 60-30 (1960).

The authors have shown that if Xm
j are distributed according to

Gaussian and the hypothesis is true, then (1) has a χ2 distribution. Its
number of degrees of freedom (ndf) is equal to nc after substituting Xj

with the values that turn (1) to the minimum and satisfy (2).
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Example of an application: WASA discovery
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An example of the employment of a similar technique is the WASA
observation of the resonance-like cross section behavior for the pd→ dπ0π0psp
reaction.
The authors identified the following chain of the processes:

p+ d→ d+ π0 + π0 + psp → d+ 2γ + 2γ + psp.

There were 12 equations, and psp, pπ0
1
, pπ0

2
were found with KinFit.
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WASA setup while in CELSIUS

WASA setup while in CELSIUS.

MDC The Mini-Drift Chamber

SCS Superconducting Solenoid

PSB Plastic Scintillator Barrel

SEC CsI (Na) Electromagnetic
Calorimeter

FPC Proportional Counter
straw chamber (tracker)

FTH The Forward Trigger
Hodoscope

FRH The Forward Range
Hodoscope

FVH The Forward Veto
Hodoscope
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Realization and Restrictions of proposed method

WASA used the method of Lagrange multipliers:

χ2 =

np,np∑
k=1,j=1

(Xi −Xm
i )Zi,j(Xj −Xm

j ) + 2

nc∑
λ=1

αλfλ(X) (3)

Here αλ are arbitrary multipliers to be found during minimization;
both Xi and αλ are varied.
Some shortcomings of the method:

I Measurement errors are assumed to have Gaussian distribution;

I In (3) the kinematical parameters themselves are used. In the
experiment we obtain a number of primary observables like hit
coordinates. Often we have limited knowledge on their errors, and
they may be far from Gaussian;

I Thus, for applying the technique (3) one should somehow find the
matrix Zi,j ;

I In other words we have the problem of error propagation.
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KinFit in JINR in 1960-s

I FUMILI by S.N. Sokolov and I.N. Silin;

I Penalty function method by V.I. Moroz [V.I. Moroz, JINR, P-1958
(1965)].

χ2 =

np,np∑
k=1,j=1

(Xi −Xm
i )Zi,j(Xj −Xm

j ) + T

nc∑
λ=1

(fλ/∆(fλ))2

T : large number;

∆(fλ): “error” of the constraint.

The idea is if T →∞ the parameter estimates approach the true ones.
Drawbacks of this method:

I Selection of the value T?

I The resulting value of χ2 and parameters are distorted and one
should control it.

Later in last half of 60-s JINR switched to the method of Lagrange
multipliers used in CERN.
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Generalization of the method

Goal: bypass the propagation error problem.
[3] A.J. Ketikian, . . . , V.S. Kurbatov et al., NIM A 314 572 (1992).

χ2 =
1

2

nf ,nf∑
i=1,j=1

(Ci(X)− Cmi )Qi,j(Cj(X)− Cmj ) (4)

and satisfying the constraints

fλ(X) = 0; λ = 1 . . . nc.

Ci(X): observables (functions of kinematical parameters X);

Cmi : measured values of observables;

Qi,j : inverse error matrix.

If errors have Gaussian distribution and the hypothesis is true, then (4)
has χ2 distribution with ndf = nf − np + nc, np is the number of
kinematical parameters, i.e. the dimensionality of X.
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Method of elimination of differentials

In the neighborhood of parameter values X0: the function

χ2 =
1

2

nf ,nf∑
i=1,j=1

(Ci(X)− Cmi )Qi,j(Cj(X)− Cmj )

is approximated by a quadratic form

F = F0 + G ·∆X +
1

2
∆XT · Z ·∆X, (5)

and the constraints f(X) = 0 by

f(X) = f(X0) +D ·∆X = 0. (6)

G: a vector of derivatives;

Z: a matrix of second derivatives over X;

D: a matrix of constraint derivatives over X with nc rows
and np columns.
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Method of elimination of differentials

f(X) = f(X0) +D ·∆X

= f(X0) +D1 ·∆Xf +D2 ·∆Xc.

D1: sub-matrix of D with nc rows and np − nc columns;

D2: sub-matrix of D with nc rows and nc columns.

One can express ∆Xc as a function of ∆Xf :

∆Xc = R + S ·∆Xf (7)

and substitute it into (5):

F = F0 + G ·∆X +
1

2
∆XT · Z ·∆X

= F ′0 + G′ ·∆Xf +
1

2
∆XT

f · Z ′ ·∆Xf .

(8)

Thus, we get a quadratic form depending Xf with the dimensionality
np − nc, and have the dimensionality of the problem reduced.
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Details

∆Xc = R + S ·∆Xf ; (7)

F = F ′0 + G′ ·∆Xf +
1

2
∆XT

f · Z ′ ·∆Xf ; (8)

F
′
0 = F0 +

nc∑
k=1

Rk

[
Gnf+k +

1

2

nc∑
l=1

Znf+k,nf+lRl

]
;

G
′
i = Gi +

nc∑
k=1

Gnf+kSk,i +

nc∑
k=1

Rk

[
Znf+k,i +

nc∑
l=1

Sl,iZnf+l,nf+k

]
;

Z
′
i,j = Zi,j +

nc∑
k=1

[
Sk,iZnf+k,j + Sk,jZi,nf+k

]
+

nc,nc∑
k=1,l=1

Sk,iZnf+k,nf+lSl,j .
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Realization of the method

The FUMILI algorithm has been extended with the method of
elimination of differentials.
FUMILI basics:

χ2 =
1

2

nf ,nf∑
i=1,j=1

(Ci(X)− Cmi )Qi,j(Cj(X)− Cmj ) (4)

in the neighborhood of X0 expands to

F = F0 + G ·∆X +
1

2
∆XT · Z ·∆X, (5)

Requirement for the minimum: the first derivatives of (5) over
parameters should equal zeros.
Thus, the formula for the parameters steps leading to the minimum is:

∆X = −Z−1 ·G. (9)
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FUMILI basics, continued

The matrix of the second derivatives (hessian) should be positively
defined.
For (4) the matrix of second derivatives is:

Zi,j =

nf ,nf∑
k=1,l=1

[
∂Ck
∂Xi

∂Cl
∂Xj

+
∂2Ck

∂Xi∂Xj
(Cl(X)− Cml )

]
Qk,l. (10)

To ensure the hessian is positively defined, FUMILI utilizes the
following trick: the second term in (10) is discarded, and such a matrix
is always positively defined.
FUMILI employment in the practice over many years has shown its
simplicity and reliability over enormous variety of the problems.

14 / 19



Model example of constrained fit

PDF(x, y) = (1 + α1 · x+ α2 · y)/(1 + 0.5 · α1 + 0.5 · α2)

Area: 0 < x < 1 and 0 < y < 1;
True values: α1 = 0.5 and α2 = 0.8;

Events: 105;
Constraint: α1 + α2 = 1.3.

The values of the estimates for the constrained and unconstrained cases.

Errors cited are those calculated by the program.

parameter constrained option unconstrained option

α1 0.501± 0.013 0.515± 0.023
α2 0.799± 0.013 0.815± 0.026

I In both cases the estimates are within one calculated error of true values;
I Calculated errors in constrained option are two times less than in

unconstrained;
I The values of estimates in constrained option are much nearer to the

true one.
15 / 19



KinFit with elimination of differentials at ANKE

We extensively used KinFit while processing experimental data of the
reaction pp→ ppSπ

0, employing FUMILI extended with the method of
elimination of differentials [EPJ Web of Conferences 204, 08008 (2019)].

prelim
inary
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pp (0) of
the pp→ ppSπ

0 reaction;
ppS is a proton pair with
Epp < 3 MeV, so that the
protons are mainly in 1S0
state. The cross section
exhibits a peak at the en-
ergy

√
s ≈ 2.65 GeV.
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ANKE setup

COSY

beam

STT

Target

MWPC

MWDC, MWPC

MWPC

TOF-start
FD

PD

ND

scintillation
counters

TOF-stop

scintillation
counters

X
Z

Y

FD: forward
detector;

PD: positive
detector;

ND: negative
detector;

STT: silicon
tracking
telescope;

D2: main spec-
trometric
magnet;

D1, D3: other ANKE
magnets.
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Conclusion

I KinFit is an essential technique for a modern particle physics
experiment;

I An approach for constrained KinFit using the method of
elimination of differentials has been developed several years ago;

I The approach is self-evident and could be applied directly for any
iterative method of gradient minimization using χ2-like
functionals;

I The software realization of the method has been developed,
extending the FUMILI minimization package;

I The method has been tested using both the model and real
experimental cases;

I Three approaches for constrained KinFit have been discussed in
the talk: Lagrange multipliers, penalty function and elimination of
differentials;

I Future SPD software might contain all the three KinFit methods
with an option for a user to switch between them.
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Thank you for your
attention!

Any questions?
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