NN SPIN AMPLITUDES AND PD SCATTERING

Yuriy UZIKOV (JINR, Dubna)

In collaboration with Colin Wilkin (UC of London, Great Britain)
and
Oleg Selyugin (BLTP, Dubna)
Content

- Motivation
- Spin amplitudes in $NN \rightarrow NN$
- Invariant spin amplitudes in $pd \rightarrow pd$
- Spin-dependent Glauber theory of pd elastic scattering
- Inelastic dp-scattering $dp \rightarrow \{pp\}(^1S_0)+n$
- $dd \rightarrow dd$ and inelastic dd-scattering with formation of $NN(^1S_0)$ pairs
- Search for T-invariance violation in double polarized pd scattering
- Conclusion
For identical spin $\frac{1}{2}$ particles under Lorentz and P-,T- invariance:

spin non-flip \(\phi_1(s, t) = <++|M|++> \)

double spin-flip \(\phi_2(s, t) = <++|M|--> \)

spin non-flip \(\phi_3(s, t) = <+-|M|+-> \)

double spin-flip \(\phi_4(s, t) = <-+|M|--> \)

single spin-flip \(\phi_5(s, t) = <++|M|++-> \).

For non-identical (pn) nucleons one has 6 amplitudes,
T-reversal non-invariance provides two additional amplitudes.

All spin-observables of NN elastic scattering are described in terms of \(\phi_i \)

\[
d\sigma/dt = N[|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4|\phi_5|^2],
\]

\[
A_N \sim Im[(\phi_1 + \phi_2 + \phi_3 - \phi_4)\phi_5^*]
\]

\[
A_{NN} \sim 2|\phi_5|^2 + Re(\phi_1^*\phi_2 - \phi_3^*\phi_4)
\]

\[\ldots\]
Helicity amplitudes of NN-scattering

Number of linearly independent non-zero spin observables:
single-spin (asymmetries A_i, polarizations P_i) – 2
double-spin (A_{ii}, ...) – 12
triple-spin – 9
four- spin – 2

Complete polarization experiment
for pp-elastic requires 9 independent observables.
PWA GWU is performed for pp-elastic up to 3.8 GeV/c (SAID
R.A. Arndt, I.I. Strakovsky, B.L. Workman PRC 56, 3005 (1997);
PWA for pn- elastic – up 1.2 GeV/c

Concerning SPD NICA, above 3 GeV/c $d\sigma/dt$ and mainly A_N (up to 50 GeV/c) and A_{NN}, C_{LL} (up to 6 GeV/c, 12 GeV/c) are measured. Data on double-spin observables D_{NN}, K_{NN} are rather poore in the region of forward angles.

Parametrizations (fit) of the pp- data:
A systematic analysis of pp elastic scattering from COSY-EDDA, SATURNE, GZS ANL /A. Sibirtsev et al. EPJA 45 (2010) 357/
\omega, \rho, f_2, a_2 Reggeon and Pomeron exchanges for $P = 3 - 50$ GeV/c. Isospin structure and G-parity relations allow to obtain the $\bar{p}p$- and $\bar{p}n$- elastic amplitudes from the pp amplitudes (J.R. Pelaez, 2006):

$$\phi(pp) = -\phi_\omega - \phi_\rho + \phi_{f_2} + \phi_{a_2} + \phi_P$$
$$\phi(\bar{p}p) = \phi_\omega + \phi_\rho + \phi_{f_2} + \phi_{a_2} + \phi_P$$
$$\phi(pn) = -\phi_\omega + \phi_\rho + \phi_{f_2} - \phi_{a_2} + \phi_P$$
$$\phi(\bar{p}n) = \phi_\omega - \phi_\rho + \phi_{f_2} - \phi_{a_2} + \phi_P$$

However, not all available data ($C_{NN}, C_{LL}, C_{SS}, C_{LS}, D_{NN}, D_{SS}, D_{LS}, K_{NN}, \Delta \sigma_T, H_{SNS}$... measured by ANL at 6 GeV/c, and some at 12 GeV/c) were included into the fit.
PN elastic scattering

SAID date base:
R.A. Arndt et al. m PRC 56 (1997) 3005; http://gwdac.phys.gwu.edu
pp up 3.0 GeV/c, pn – up 1.2 GeV
A. Sibirtsev et al, (2010); Only 3-4 GeV/c
Re $f(0^\circ)/\text{Im}(0^\circ)$ ratio.

A problem with antip-p theory: no zero

A. Sibirtsev et al, EPJA (2010)

Fig. 16. Ratio of the real-to-imaginary parts of the forward amplitudes for pp (triangles, solid line) and $\bar{p}p$ (squares, dashed line), respectively. The data are taken from the PDG [32].
$\sqrt{s} = 13.4; 18.4; 30.4; 44.7 \text{(GeV)}$;

$\sqrt{s} = 52.8 \text{GeV}$;

$\sqrt{s} = 7 \text{TeV}$;

O.V. Selyugin, PRD 91 (2015)
high-energy general structure model (HEGS) model
Invariant spin amplitudes of pd- elastic scattering

\[M_{fi} = \phi^+_\mu e^{(\lambda)^*}_\beta e^{(\lambda)}_\alpha T_{\beta\alpha} (\vec{p}, \vec{p}', \vec{\sigma}) \phi_\mu, \]

\[2 \times 3 \times 2 \times 3 = 36 \]

P-invariance (18 amplitudes)

\[T_{\alpha\beta} (-\vec{p}, -\vec{p}', \vec{\sigma}) = T_{\alpha\beta} (\vec{p}, \vec{p}', \vec{\sigma}) \]

T-invariance (lefts 12 amplitudes):

\[T_{\beta\alpha} (\vec{p}, \vec{p}', \vec{\sigma}) = T_{\alpha\beta} (-\vec{p}, -\vec{p}, -\vec{\sigma}) \]
\begin{align*}
\hat{q} &= (p - p'), \quad \hat{k} = (p + p')/||\hat{n} = [k \times q] - \text{unit vect.} \\
M &= (A_1 + A_2\sigma\hat{n}) + (A_3 + A_4\sigma\hat{n})(S\hat{q})^2 + (A_5 + A_6\sigma\hat{n})(S\hat{n})^2 + A_7(\sigma\hat{k})(S\hat{k}) + \\
&\quad A_8(\sigma\hat{q})[(S\hat{q})(S\hat{n}) + (S\hat{n})(S\hat{q})] + (A_9 + A_{10}\sigma\hat{n})(S\hat{n}) + A_{11}(\sigma\hat{q})(S\hat{q}) + \\
&\quad A_{12}(\sigma\hat{k})[(S\hat{k})(S\hat{n}) + (S\hat{n})(S\hat{k})] \\
&\quad + (T_{13} + T_{14}\sigma\hat{n})[(S\hat{k})(S\hat{q}) + (S\hat{q})(S\hat{k})] + T_{15}(\sigma\hat{q})(S\hat{k}) + T_{16}(\sigma\hat{k})(S\hat{q}) + \\
&\quad T_{17}(\sigma\hat{k})[(S\hat{q})(S\hat{n}) + (S\hat{n})(S\hat{q})] + T_{18}(\sigma\hat{q})[(S\hat{k})(S\hat{n}) + (S\hat{n})(S\hat{k})] \\
A_1 \div A_{12} \text{ T-even P-even:} \\
\text{M. Platonova, V.L. Kukulin, PRC 81 (2010) 014004} \\
\text{\textbf{T}_{13} \div \textbf{T}_{18} : TVPC}
\end{align*}

The polarized elastic differential pd cross section

\begin{align*}
\left(\frac{d\sigma}{d\Omega} \right)_{pol} = \left(\frac{d\sigma}{d\Omega} \right)_0 \left[1 + \frac{3}{2} p_i^p p_i^d C_{ij} + \frac{1}{3} P_{ij} A_{ij} + \ldots \right].
\end{align*}

(3)
Spin observables of the pd-pd

\[
A_j^p = \frac{TrM \sigma_j M^+}{TrMM^+}, \\
A_j^d = \frac{TrM \hat{S}_j M^+}{TrMM^+}, \\
A_{ij} = \frac{TrM \hat{P}_{ij} M^+}{TrMM^+}, \\
C_{ij} = \frac{TrM \sigma_i \hat{S}_j M^+}{TrMM^+}, C_{ij,k} = \frac{TrM \sigma_k \hat{P}_{ij} M^+}{TrMM^+}, \ldots
\]

\[
\hat{P}_{ij} = \frac{3}{2} (\hat{S}_i \hat{S}_j + \hat{S}_j \hat{S}_i) - 2 \delta_{ij}
\]
Elastic $pd \rightarrow pd$ transitions

$$
\hat{M}(q, s) = \exp \left(\frac{1}{2} i q \cdot s \right) M_{pp}(q) + \exp \left(- \frac{1}{2} i q \cdot s \right) M_{pn}(q) + \int \frac{i}{2\pi^{3/2}} \exp \left(i q' \cdot s \right) \left[M_{pp}(q_1) M_{pn}(q_2) + p \leftrightarrow n \right] d^2q'.
$$

On-shell elastic pN scattering amplitude (T-even, P-even)

$$
M_{pN} = A_N + (C_N \sigma_1 + C'_N \sigma_2) \cdot \hat{n} + B_N (\sigma_1 \cdot \hat{k})(\sigma_2 \cdot \hat{k}) + (G_N - H_N)(\sigma_1 \cdot \hat{n})(\sigma_2 \cdot \hat{n}) + (G_N + H_N)(\sigma_1 \cdot \hat{q})(\sigma_2 \cdot \hat{q})
$$

M. Platonova, V. Kukulin, PRC 81 (2010) 014004:
Test calculations: pd elastic scattering at 135 MeV

Data: von B. Przewoski et al. PRC 74 (2006) 064003
The Glauber model and exact Faddeev calculations

The Glauber theory: eikonal approximation, on-shell hN-scattering amplitudes (no off-shell effects), maximal multiplicity is equal to A (no multiple scatterings taken into account in Faddeev calculations)

Why the Glauber model is so successful?

Test calculations: pd elastic scattering at 1 GeV
Vector analyzing powers A_y^p and A_y^d in pd elastic

$$A_y^p = 2 \text{Re}[2(A_1^* + A_3^* + A_5^*)(A_2 + A_4 + A_6) + A_1^* A_2 - A_3^* A_6 - A_4^* A_5 + 2 A_9^* A_{10})]/(3d\sigma/dt)$$

$$A_y^d = 2 \text{Re}[2 A_1^* + A_3^* + 2 A_5^*) A_9 + 2(A_2^* + A_4^* + 2 A_6^*) A_{10} + A_7^* A_{12} + 2 A_8^* A_{11})]/(3d\sigma/dt)$$

At $q\to0$, SS- mechanism:

$$R = A_y^d / A_y^p, R(q = 0) = \frac{2}{3}$$

$$\text{Re}(A_2^* A_{10}) / \text{Re}(A_2^* A_1) = \frac{9}{2}(R - \frac{2}{3})$$

$$A_1 = (S_0 + \sqrt{2}S_2) A_N; A_2 = (S_0^{(0)} + \sqrt{2}S_2^{(1)}) C_N; A_{10} = (S_0^{(0)} + \frac{1}{\sqrt{8}} S_2^{(1)})(G_N - H_N)$$

$$M_N = A_N + (C_N + C_N^t) \bar{\sigma} \bar{n} + (G_N + H_N)(\bar{\sigma} \bar{q})(\bar{\sigma}_N \bar{q}) + (G_N + G_N)(\bar{\sigma} \bar{n})(\bar{\sigma}_N \bar{n})$$
\[\hat{M} = a + ib\hat{\sigma}_y + ic\hat{S}_y. \]

Here \(\hat{\sigma}_y \) and \(\hat{S}_y \) are operators acting, respectively, on the spins of the proton and deuteron. The proton analyzing power results from an interference between the amplitudes \(a \) and \(b \) whereas that of the deuteron is due to an interference between \(a \) and \(c \). Straightforward calculations yield

\[A_y^p = 2\text{Im}\{ab^*\}/[|a|^2 + |b|^2 + \frac{2}{3}|c|^2], \]
\[A_y^d = \frac{4}{3}\text{Im}\{ac^*\}/[|a|^2 + |b|^2 + \frac{2}{3}|c|^2]. \]

\[b = c \quad \text{at} \quad q \approx 0 \quad \text{then} \quad R = \frac{2}{3} \]
It follows from the results given in Table 1 that, within the refined Glauber model, most of the deviations of \(R \) from 2/3 at \(q = 0 \) are due to the spin-spin term in single scattering; the modifications due to the double scattering are small in comparison and may be estimated from theory with sufficient precision. Using the

Table 1

Predicted values of the ratio of deuteron to proton analyzing powers in \(pd \) elastic scattering as \(q \to 0 \). The single (SS) and full (SS + DS) models of Ref. [12] were evaluated using as input a partial wave analysis of the nucleon-nucleon amplitudes [16]. The table shows the small deviations of \(R \) from 2/3.

<table>
<thead>
<tr>
<th>(T_p) MeV</th>
<th>(100(R - 2/3))</th>
<th>SS+DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>-1.09</td>
<td>-1.24</td>
</tr>
<tr>
<td>200</td>
<td>-0.82</td>
<td>-0.73</td>
</tr>
<tr>
<td>250</td>
<td>-1.02</td>
<td>-0.81</td>
</tr>
<tr>
<td>450</td>
<td>-2.25</td>
<td>-1.55</td>
</tr>
<tr>
<td>600</td>
<td>-4.28</td>
<td>-3.31</td>
</tr>
<tr>
<td>800</td>
<td>-2.75</td>
<td>-2.00</td>
</tr>
<tr>
<td>1000</td>
<td>-0.36</td>
<td>0.25</td>
</tr>
<tr>
<td>1125</td>
<td>1.84</td>
<td>2.35</td>
</tr>
<tr>
<td>1135</td>
<td>2.04</td>
<td>2.53</td>
</tr>
</tbody>
</table>

\[
R = \frac{A_y^d}{A_y^p}
\]

\[
\delta = R - 2/3 \text{ is sensitive to spin-spin NN terms}
\]

Figure 2: Difference between the predictions of the refined Glauber model \cite{10} without \(R\) and with \(Rf\) the NN spin-spin contribution at 800 MeV expressed as a percentage of their average.
precise measurement of R could provide some information on the NN transverse spin-spin amplitude in the forward direction that is independent of the measurement of the spin dependence of total cross sections and the use of forward dispersion relations [2].

constraint on the spin-spin amplitudes. This may present a severe experimental challenge because, even in the well-controlled IUCF experiment, the overall uncertainty in (A^p_y, A^d_y) was (0.9%, 1.5%) and (2.3%, 2.0%) at 135 MeV and 200 MeV, respectively [8].
Inelastic dp-scattering $dp \rightarrow \{pp\}(^{1}S_{0}) + n$

$pd \rightarrow (pp) + n$, $E_{pp} < 3\text{MeV}$, $1S0$ ANKE
dd- elastic and quasi-elastic scattering

Plan for further calculations

“Inelastic intermediate states in proton-deuteron and deuteron-deuteron elastic collisions at the ISR”

The solid curve is the absolute prediction of the full theory Glauber +IS
SEARCH for T-invariance VIOLATION IN DOUBLE POLARIZED PD -SCATTERING
Why search for Time-invariance Violating P-conserving Effects?

- The T-violating, P-violating (TVPV) effects arise in SM through CP violating phase of CKM matrix and the QCD $\theta -$ term.

 EDM.

- T-violating P-conserving (TVPC) (flavor-conserving) effects (first considered by L. Okun, Yad.Fiz. 1 (1965) 938) do not arise in SM as Fundamental interactions, although can be generated through weak corrections to TVPV interactions

 ★ Observed (in K^0, B^0, D^0) CP violation in SM leads to simultaneous violation of T- and P-invariance.

 Therefore, to produce T-odd P-even term one should have one additional P-odd term in the effective interaction: $g \sim M^4 G_F^2 \sin \delta \sim 10^{-10}$

 ★ ...much larger g is not excluded by unknown interaction beyond the SM.

 ★ Experimental limits on TVPC effects are much weaker than for EDM.
Forward elastic pd scattering amplitude (P-even, T-even):

$$e'_\beta \hat{F}_{\alpha\beta}(0)e_\alpha = g_1[e \ e'^*- (\k e)(\k e'^*)] + g_2(\k e)(\k e'^*) +$$

$$ig_3\{\sigma[e \times e'^*] - (\k e)(\k \cdot e'\times e'^*])\} + ig_4(\sigma \k)(\k \cdot e \times e'^*)$$

... and plus T-odd P-even term

$$\cdots + g_5\{(\sigma \cdot [\k \times e])(k \cdot e'\times e'^*]) + (\sigma \cdot [\k \times e'^*])(k \cdot e)\}$$

Generalized Optical theorem:

$$Im\frac{Tr(\hat{\rho}_i\hat{F}'(0))}{Tr\hat{\rho}_i} = \frac{k}{4\pi}\sigma_i$$
T-even P-even

\[M_N(p, q; \sigma, \sigma_N) = A_N + C_N \sigma \hat{n} + C'_N \sigma_N \hat{n} + B_N(\sigma \hat{k})(\sigma_N \hat{k}) + (G_N + H_N)(\sigma \hat{q})(\sigma_N \hat{q}) + (G_N - H_N)(\sigma \hat{n})(\sigma_N \hat{n}) \]

T-odd P-even

\[t_{pN} = h_N[(\sigma \cdot k)(\sigma_N \cdot q) + (\sigma_N \cdot k)(\sigma \cdot q) - \frac{2}{3}(\sigma_N \cdot \sigma)(k \cdot q)]/m_p^2 \]

\[+ g_N[\sigma \times \sigma_N] \cdot [q \times k][\tau - \tau_N]z/m_p^2 \]

\[+ g'_N(\sigma - \sigma_N) \cdot i [q \times k][\tau \times \tau_N]z/m_p^2. \]

Null-test signal:

\[\tilde{g} = \frac{i}{4\pi m_p} \int_0^\infty dq q^2 \left[S_0^{(0)}(q) - \sqrt{8} S_2^{(1)}(q) - 4 S_0^{(2)}(q) + \sqrt{2} \frac{4}{3} S_2^{(2)}(q) + 9 S_1^{(2)}(q) \right] \left[-C'_n(q) h_p + C'_p(q)(g_n - h_n) \right] \]
\[C' \approx i\phi_5 + i q/2m(\phi_1 + \phi_3)/2 \]

\[
\sigma_{tot} = \underbrace{\sigma_0 + \sigma_1 p^p \cdot P^d}_{T-even,P-even} + \sigma_2 (p^p \cdot \hat{k})(P^d \cdot \hat{k}) + \sigma_3 P_{zz} \quad + \quad \underbrace{\tilde{\sigma}_{tvpc} p^p y P^d}_{T-odd,P-even} \quad \underbrace{P_{xz}}_{T-odd,P-even}
\]
Conclusion and outlook

- Measurement of spin observables \((d\sigma/dt, A^p_y, A^d_y, A_{yy}, A_{xx}, C_{i,j})\) of \(pd\)- elastic, \(pd \rightarrow n\{pp\}_s, dd \rightarrow dd, \{pp\}_s + \{nn\}_s\) at SPD NICA is important. Available Regge parameterizations for pp amplitudes at \(P_L = 3 - 50\) GeV/c (A. Sibirtsev et al. 2010; Van Orden; others) can be used for calculation of these observables within the Glauber theory. Comparison between data and theory will provide a clean test for the pp- and pn- elastic amplitudes.

- The ratio \(R = A^d_y/A^p_y\) at small \(q\) being measured with a high accuracy (\(\sim 1\%\)) gives an information about spin-spin transversal NN amplitudes.

- The Regge pp-formalism provides an access to \(\bar{p}N\) elastic, but actually was not tested in double spin observables. The necessary data \(A_{NN}\) can be obtained at SPD NICA \(\rightarrow\) to test the pp-amplitudes, to study “oscillation effects” and to test the dispersion relations for pN-data.

- Search of T-invariance violation in double polarized pd and dd scattering at energies corresponding to the early Universe seems to be very important. The elastic (T-even) pN- amplitudes at SPD NICA energies are necessary to analyse data of the dedicated experiment.
NN-forces are fundamental to nuclear physics on the whole. It is important to study a full set of their components, including such small components as spin-spin forces both at low and high energies... via the NN elastic scattering amplitudes
Thank you for attention!
Fig. 2. Calculated results at 12 GeV/c; (a) $d\sigma/dt$, data are from Ref. 20), (b) P, data from Refs. 21) and 22), (c) C_{nn}, data from Ref. 22), (d) C_{LL}, data from Ref. 23).
- Planned experiments to search for CP violation beyond the SM

- Detecting a non-zero **EDM** of elementary fermion (neutron, atoms, charged particles). The current experimental limit

\[|d_n| \leq 2.9 \times 10^{-26} \text{e cm} \]

is much less as compared the SM estimation (B.H.J. McKellar et al. PLB 197 (1987) 1.4 \times 10^{-33} \text{e cm} \leq |d_n| \leq 1.6 \times 10^{-31} \text{e cm}

- Search for CP violation in the **neutrino sector** \((\theta_{13} \neq 0, \text{ then generation of lepton asymmetry and via } B - L \text{ conservation to get the BAU})\).

Thouse are T-violating and Parity violating (TVPV) effects.

Much less attention was paid to T-violating P-conserving (TVPC) flavor conserving effects.
Search for T-violation in other processes

- Search for T-violation in decays
 \(\bar{n} \to p e\bar{\nu} \) or triple nuclear fussion

 \[W_{if} \sim X s_{n}[k_n \times k_\nu] + R s_{n}[k_n \times s_e] \]

i) FSI with Coulomb
ii) Not all T-odd correlations are related to the true T-invariance violation

- Total cross section of the \(nA \) interaction from forward \(nA \) scattering amplitude

 \[
 f = \underbrace{A + p_n p_T B(s \cdot I)}_{\text{strong}} + p_n C(s \cdot k) + p_n p_T D(s \cdot [k \times I]) +
 \underbrace{p_T E(k \cdot I)}_{\text{PV}} + p_n p_T F(k \cdot I)(s \cdot [k \times I])
 \]

 T-odd correlations in forward elastic scattering (\(= \)in total cross section):

 - Three-fold \((s \cdot [k \times I]) - \text{TVPV} \)
 - Five-fold \((k \cdot I)(s \cdot [k \times I]) - \text{TVPC} \)

 TRANSMISSION experiment!
Time-Reversal Violation in the Kaon and \bar{B}^0 Meson Systems

- CP-violation in K- and B-meson physics (under CPT) \implies T-violation
- T violation in the K-system:
 $K^0 \rightarrow \bar{K}^0$ and $\bar{K}^0 \rightarrow K^0$

Difference between probabilities was observed
These channels are connected both by T- and CP- transformation!

- Direct observation of T-violation in
 $\bar{B}^0 \rightarrow B_-$ and $B_- \rightarrow \bar{B}^0$

connected only by T-symmetry transformation
(There are three other independent pairs)
J.P. Lees et al. (BABAR Collaboration) PRL 109 (2012) 211801
The results are consistent with current CP-violating measurements obtained invoking CPT-invariance

We will focus on TVPC flavor conserving effects.
This process is described by the transmission factor $T(n)$:

$$T(n) = \frac{I(n)}{I(0)} = \exp(-\sigma_T \rho d n)$$ \hspace{1cm} (5)

with:
- $I(0)$ - Intensity of the primary beam
- $I(n)$ - Intensity of the beam having passed n times the internal target with density ρ and thickness d
- σ_T - Total cross-section
- ρd - The areal target density

For the case of polarized particles σ_T has to be replaced by:

$$\sigma_T = \sigma_{y,xz} + \sigma_{Loss} = \sigma_o \left(1 + P_y P_{xz} A_{y,xz}\right) + \sigma_{Loss}$$ \hspace{1cm} (6)

with:
- σ_o - Unpolarized total cross-section
- σ_{Loss} - Loss cross-section, taking account of beam losses outside of the target
\[
\Delta T_{y,xz} = \frac{T^+ - T^-}{T^+ + T^-} = \frac{\exp(-\chi^+) - \exp(-\chi^-)}{\exp(-\chi^+) + \exp(-\chi^-)}
\]

with:
\(T^+ \) - Transmission factor for the proton-deuteron spin-configuration
with \(P_y P_{xz} > 0 \)

\(T^- \) - Transmission factor for the time reversed situation, i.e.
\(P_y P_{xz} < 0 \)

\(\chi^{+/−} \) - Is the product of the factors \((\sigma T \cdot p d \cdot n)\) with respect to the proton-deuteron spin-alignment

this gives:

\[
\Delta T_{y,xz} = -\tanh(\sigma_o \Delta d n P_y P_{xz} A_{y,xz}) \tag{8}
\]

Is the argument of the \(\tanh \) in equation (8) small, then:

\[
\Delta T_{y,xz} = -\sigma_o \rho d n P_y P_{xz} A_{y,xz} =: S A_{y,xz} \tag{9}
\]
$$Del = \frac{\frac{d\sigma}{dt_{\text{data}}} - \frac{d\sigma}{dt_{\text{theor-exp.}}}}{\frac{d\sigma}{dt_{\text{theor-exp.}}}}$$

P. Gauron, B. Nicolescu, O.V. Selyugin, PLB 397 (1997)
To further development of the HEGS model

\[s = s / s_0 e^{i\pi/2}; \]
\[s_0 = 4m_p^2. \]
\[9 \leq \sqrt{s} \leq 8000 \text{GeV}; \]
\[n = 980 \rightarrow 3416; \quad 0.00037 < |t| < 15 \text{GeV}^2; \]
\[F_1^B(s,t) = h_2 G_{em}(t) \left(\hat{s} \right)^{\Delta_1} e^{\alpha' / (2t \ln(\hat{s})}; \]
\[F_3^B(s,t) = h_3 G_A(t)^2 \left(\hat{s} \right)^{\Delta_1} e^{\alpha' / 4t \ln(\hat{s})}; \]
\[F^B(\hat{s},t) = F_2^B(\hat{s},t) \left(1 + R_1 / \sqrt{\hat{s}} \right) + F_3^B(\hat{s},t) \left(1 + R_2 / \sqrt{\hat{s}} \right) \]
\[+ F_{\text{odd}}(s,t); \quad \alpha'(t) = (\alpha_1 + k_0 q e^{k_0 t \ln(\hat{s})}) \ln(\hat{s}). \]
\[F_{\text{odd}}^B(s,t) = h_{\text{odd}} G_A(t)^2 \left(\hat{s} \right)^{\Delta_1} \frac{t}{1 - r^2 \hat{s}} e^{\alpha' / 4t \ln(\hat{s})}; \]
\[F^{+-}(s,t) = h_{sf} q^3 G_{em}(t)^2 e^{\mu t}; \]

M.Galynskii, E.Kuraev, JETP Letters (2012)
A problem with dispersion relations at 5-8 GeV/c.

anti p - p
\[M = \frac{1}{2} \left\{ (a + b) + (a - b) \sigma_{1n} \sigma_{2n} + (c + d) \sigma_{1m} \sigma_{2m} + (c - d) \sigma_{1l} \sigma_{2l} + e(\sigma_{1n} + \sigma_{2n}) + f(\sigma_{1n} - \sigma_{2n}) + \right. \\
\left. + \ g(\sigma_{1l} \sigma_{2m} + \sigma_{1m} \sigma_{2l}) + h(\sigma_{1l} \sigma_{2m} - \sigma_{1m} \sigma_{2l}) \right\}, \]

where

\[l = \frac{k_f + k_i}{|k_f + k_i|}, \quad m = \frac{k_f - k_i}{|k_f - k_i|}, \quad n = \frac{k_i \times k_f}{|k_i \times k_f|} \]

\[f = h = 0. \]
Available experimental data set on the differential cross sections for the elastic dp, dd and pd collisions in CM and Collider systems.

Colliding d^+d^- beams. Beam kinetic energy T_d: 2-5.5 GeV/u

Elastic dd, dp CM, Col diff. cross sect. $d\sigma/d\Omega_{CM,Col}$, mb/sr

- $T_d_{Lab}=6.244$ GeV
- $T_d_{CM}=1.186$ GeV
- $\theta_{1,3}_{CM}=19.2^\circ$
- $t_{1,3}=-0.65$ (GeV/c)2

- $T_d_{Lab}=1.015$ GeV
- $T_d_{CM}=0.239$ GeV
- $\theta_{1,3}_{CM}=88.36^\circ$
- $t_{1,3}=-1.85$ (GeV/c)2

ISR $dd/s=63$ GeV
- $T_d_{CM}=29.624$ GeV
- $\theta_{1,3}_{CM}=2.164^\circ$
- $t_{1,3}=-1.41$ (GeV/c)2

- $T_d_{Lab}=4.986$ GeV
- $T_d_{Col}=0.988$ GeV
- $\theta_{1,3}_{Col}=95.40^\circ$
- $t_{1,3}=-6.593$ (GeV/c)2

Count rate R at luminosity $L_r = 1 \times 10^{30}$ cm$^{-2}$s$^{-1}$

- $pd = 0.135$ GeV
- $pd = 0.180$ GeV
- $dp = 0.447$ GeV
- $dp = 0.454$ GeV
- $dp = 0.641$ GeV
- $dp = 0.851$ GeV
- $dp = 0.988$ GeV
- $dp = 0.223$ GeV
- $dp = 0.239$ GeV
- $dp = 0.410$ GeV
- $dp = 0.722$ GeV
- $dp = 0.894$ GeV
- $dp = 1.186$ GeV
- $dp = 1.214$ GeV
- $dd = 1.442$ GeV
- $dd = 2.545$ GeV

For $dd/s=53$ GeV

- $dd/s=53$ GeV
- $dd/s=63$ GeV

- $pd/s=53$ GeV
- $pd/s=63$ GeV
What can be done at SPD NICA?

- Measurement of spin observables \(\left(\frac{d\sigma}{dt}, A^p_y, A^d_y, A_{yy}, A_{xx}, C_{i,j} \right) \) of \(pd\)- elastic, \(pd \rightarrow n\{pp\}, dd \rightarrow dd, dd \rightarrow \{pp\} + \{nn\} \).

Available Regge formalism for pp amplitudes at \(P_L = 3 - 50 \) GeV/c (A. Sibirtsev et al. 2010; W. Ford, J.W. Van orden, 2013) can be used for calculation of these observables within the Glauber theory. Comparison between data and theory will be a clean test for the pp- and pn- elastic amplitudes.

- This Regge pp-formalism provides an access to \(\bar{p}N \) elastic, but actually was not tested in double spin observables at i) \(>4 \) GeV/c at ii) forward pp-scattering angles. The necessary data on \(A_{NN}, A_{LL}, ... \) can be obtained at SPD NICA \(\Rightarrow \) test of the pp-amplitudes, dispersion relations for \(pN, \bar{p}N\)-data, study of “oscillation effects”.

- New theoretical model for pN-elastic scattering amplitudes at NICA energies with minimum free parameters will be developed (O.V. Selyugin) interpolating between 3 GeV and 10 TeV.

- Search of T-invariance violation in double polarized pd-, and dA- scattering at energies corresponding to the early Universe was not yet performed. The elastic (T-even) pN- amplitudes at SPD NICA energies are necessary to analyse data of the dedicated experiment.
\[\sigma_{\text{tot}} = \sigma_0 + \sigma_1 \mathbf{p}^p \cdot \mathbf{P}^d + \sigma_2 (\mathbf{p}^p \cdot \hat{\mathbf{k}})(\mathbf{P}^d \cdot \hat{\mathbf{k}}) + \sigma_3 P_{zz} + \tilde{\sigma}_{\text{tppc}} p^p P^d \]

whith

\[
\sigma_0 = \frac{4\pi}{k} \text{Im} \frac{2g_1 + g_2}{3}, \quad \sigma_1 = -\frac{4\pi}{k} \text{Im} g_3, \\
\sigma_2 = -\frac{4\pi}{k} \text{Im} (g_4 - g_3), \quad \sigma_3 = \frac{4\pi}{k} \text{Im} \frac{g_1 - g_2}{6}.
\]

Yu.N. Uzikov, J. Haidenbauer, PRC 79 (2009) 024617; PRC 87 (2013) 054003,

\[\tilde{\sigma}_{\text{tppc}} = -\frac{4\pi}{k} c \text{Im} g_5 \]
\[\frac{1}{2} + 1 \rightarrow \frac{1}{2} + 1 \]

\[(2 + 1)^2 (2\frac{1}{2} + 1)^2 = 36 \text{ transition amplitudes}\]
P-parity \Rightarrow 18 independent amplitudes
T-invariance for $pd \rightarrow pd$ \Rightarrow 12 independent amplitudes

Transition matrix element

\[M_{fi} = \langle \mu' \lambda' | M | \mu \lambda \rangle \]