Physics with prompt photons at SPD

Alexey Guskov JINR DLNP avg@jinr.ru on behalf of the SPD working group 2.9.2019

DSPIN-19

Gluon content of nucleon

~2/3

Gluon contribution to spin of nucleon is an actual question of hadron physics

 $S_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$

~1/3

Ways to access gluon structure of nucleon at low energies

prompt-photon production

The most direct way

Hard background

charmonia production

Nice signal

Model-dependent treatment

open-charm production

Rather simple treatment Problematic signal

Production of photons in hadron collisions

Prompt photons

Fragmentation photons

Relative contribution of fragmentation photons is below 15% even at much higher energies.

It can be calculated in LO and NLO

Previous studies at our energies

Experiment	Beam and target	\sqrt{s} , GeV	y range	x_T range
E95 (1979)	p; Be	19.4, 23.75	-0.7 - 0.7	0.15 - 0.45
E629 (1983)	p, π^+ ; C	19.4	-0.75 - 0.2	0.22 - 0.52
NA3 (1986)	p, π^+ , π^- ; C	19.4	-0.4 - 1.2	0.26 - 0.62
NA24 (1987)	p, π^+ , π^- ; p	23.75	-0.65 - 0.52	0.23 - 0.59
WA70 (1988)	p, π^+ , π^- ; p	22.96	-0.9 - 1.1	0.35 - 0.61
E706 (1993)	p, π^- ; Be	30.63	-0.7 - 0.7	0.20 - 0.65
E704 (1995)	p; p	19.4	< 0.74	0.26 - 0.39
UA6 (1993,1998)	$\bar{p}; p$	24.3	-0.2 - 1.0	0.34 - 0.50

Fixed target experiments

-polarised

Decay photons

Even at very high p_T signal dominates over background !

Previous results: pA

J. Phys. G: Nucl. Part. Phys. 23 (1997) A1-A69.

NA3 (1987) $p C \rightarrow \gamma X$

Previous results: pA

E706 (1993)p Be $\rightarrow \gamma X$

Previous results: pp(pbar)

P. Aurenche, M. Fontannaz, J.-P. Guillet, E. Pilon, and M. Werlen, A New Longstanding critical study of photon production in hadronic collisions, Phys. Rev. D73, 094007 (2006) [hep-ph/0602133]. xi, 70, 71 discrepancy between * WA70 pp fixed-target and INCNLO or JETPHOX UA6 pp !!! $M=\mu=MF=pt/2$ E706 pp / 530 collider data CTEQ6M A=326 MeV E706 pp / 800 !!! frag BFG II !!! UA6 pp 3 **R110 pp R806 pp** 111 √s=26 GeV **AFS pp** PHENIX preliminary pp 0 2 $D0 \overline{p}p$ ▼ CDF pp→γX √s=1.8 TeV 1

0.1

Data / Theory

0

0.01

Prompt photons at low-energy colliders

ISR: $\sqrt{s} = 63 \ GeV$ R806 (1982), R110 (1989), R807(1990)

Particle	Mass (GeV)	Prod. σ/π^0	Decay	# of photons	Branching ratio (BR)	$\sigma imes BR/\pi^0$	% in sample
π^0	0.135	1.0	γγ	2	1.0	1.0	61.4
η^{0}	0.549	0.55	γγ	2	0.38	0.209	12.8
η^{0}	0.549	0.55	πππ	6	0.30	0.165	10.1
\mathbf{K}_{s}^{0}	0.498	0.40	$\pi\pi$	4	0.31	0.124	7.6
ω^{0}	0.783	0.50	$\pi\gamma$	3	0.09	0.045	2.8
η'	0.957	1.0	$\eta\pi\pi$	6	0.084	0.084	5.2

Also at RHIC down to 62.4 GeV

Alexey Guskov, Joint Institute for Nuclear Research

Production of double photons

Much smaller cross section but rather high masses

Collaboration	\sqrt{s}	Beam	Target	Measurement
R806 [16]	63	р	p	$d^2\sigma/dydm_{\gamma\gamma}$
R807 [19]	63	р	р	$d^2\sigma/dydm_{\gamma\gamma}$
UA2 [20]	630	p	p	$d\sigma/dp_T$
UA2 [21]	630	p	р	$d^2\sigma/d\eta_1/d\eta_2$
UA1 [22]	630	P	р	σ Ed ³ σ /dp ³
E741(CDF) [24]	1800	p	р	σ d σ /d p_T
NA24 [6]	23.7	π^{-}	p	$Ed^3\sigma/dp^3$
WA70 [9]	22.96	π-	р	σ d σ /d p_T
NA3 [4]	19.4	p	С	σ

A bit more kinematics

Nucleon PDFs

DSA with longitudinally polarised beams

Gluon Sivers function

SSA with prompt photons

where $q(x_{a,b}, k_{Ta,b})$ and $G(x_{a,b}, k_{Ta,b})$ are quark and gluon distribution functions and $\Delta_N q(x_{a,b}, k_{Ta,b})$

Alexey Guskov, Joint Institute for Nuclear Research

Single spin asymmetries at vs=19.4 GeV

 A_N

0.8

0.6

Polarized measurement at FNAL E704

Phys. Lett. B 345 (1995)

2 5 < p_T < 3.1 GeV/c

Our backgrounds are also spin-dependent!

Leonard Gamberg, Zhong-Bo Kang

Phys.Lett.B696:109-118,2011

Phys.Rev. D90 (2014) no.1, 012006

But they also contain info about spin structure of nucleon!

Prompt photons and DY

Phys.Lett. B209 (1988) 397-406 (1988)

Production of low-mass dimuon pairs is a process very similar to prompt photon production

low-mass DY:

 two orders of magnitude smaller cross section
 possibility to achieve low-p_T region

This option is available only in the collider mode!

Alexey Guskov, Joint Institute for Nuclear Research

SPD detector

Prompt photons at SPD

Ideal setup:

- 4π ECAL
- minimal tracking system (vertexing, charged/neutral clusters separation)

No need for magnetic field and muon system

Measurements with prompt photons could be performed at the first stage of SPD operation

Electromagnetic calorimeter

Shashlyk-type sampling calorimeter

General requirements:

- energy range from 50 MeV to 10 GeV;
- energy resolution of about $5\%/\sqrt{E [GeV]}$;
- granularity \sim 5 cm;
- time resolution ~ 0.5 ns;
- operation in the magnetic field;
- long time stability of the basic parameters $\pm 5\%$.

Photons in the SPD setup

cm⁻¹ per 10⁶ events

Prompt photons in the SPD setup

Main background sources

decay photons from π⁰, η and other sources

	π ⁰	η	others
γ per γlπ ⁰	1	0.18	0.03

- clusters from **neutral hadrons**
- double clusters
- clusters from misidentified charged particles (5%)
- clusters from photons produced at the setup elements

General strategy:

- 1) π^0 reconstruction and subtraction of photons from $\pi^0 \to \gamma \gamma$
- 2) Subtraction of residual background: $N_{prompt \gamma} = N_{\gamma} \mathbf{k} N_{\pi^0}$

There **k**-factor is calculated from MC simulation $\mathbf{k} \approx 0.2$

Expected accuracy

- 1 year of data taking (10⁷ s) $A_{N,LL}$ with $L = 10^{32} cm^{-2} s^{-1}$ 0.4
- Beam polarization |P| = 1
- Luminosity measurement
 uncertainty is ignored

Further optimisation of the setup and background subtraction algorithms is needed

Summary

- Unpolarized and polarized physics with prompt photons looks very attractive
- All the measurements at energy scale ~20 GeV were performed 20-30 years ago It is a good time to come back with new level of experimental techniques and theoretical understanding
- We have good chance to perform such kind of measurements at SPD detector
- Background conditions for studies with prompt photons are quite hard. So the SPD detector should be effectively optimized
- Nevertheless preliminary MC studies show that the measurement of the prompt-photon production cross section on the level of a few per cent is possible at the SPD conditions
- Measurement with prompt photons could be the first stage of the SPD operation

Thank you for your attention!

