Inner tracker simulation

Current status

Requirements to inner tracker

- High radiation tolerance
- Minimum material
- High granularity
- Minimum power consumption
- Efficient cooling
- •

Tracker parameters influencing reconstruction

- Sensors type (MAPS, DSSD);
- Number of tracker layers;
- Distance between layers;
- Alignment.

Sensors' parameters

DSSD

MAPS

Size: 63x63x0,3 mm ³ (on 4" – FZ-Si wafers)	Sensor thickness (µm)	50
Pitch p⁺ strips: 95 µm;	Spatial resolution (µm)	10
Ditch p ⁺ string: 100 um;	Dimensions (mm ²)	15×30
Fich in strips: 190 µm,	Number of pixels	512x1024
Stereo angle between p^+/n^+ strips: 90^0	Time resolution (µs)	30
Number of strips: 640 (p ⁺)320(n ⁺)	Detection efficiency (%)	99
	Fake hit rate ^a	10 ⁻⁵

Ladder geometry:

- 15x30x0.05mm³ ٠ sensitive MAPS with 2mm gap between them;
- 60x60x0.3mm³ sensitive ٠ DSSD with 2mm gap between them;

Background

To study background events Pythia6 is used (pp interaction $\sqrt{s} = 26$ GeV, min biased events with central interaction)

Next steps:

- study secondary vertices;
- occupancy per sensor.

Assumptions

- All tracks are produced in primary vertex located at detector center;
- Hybrid detector setup;
- No magnetic field in inner tracker volume;
- Inner tracker geometry includes only silicon sensors (MAPS or DSSD);
- Ideal clustering;

Hit reconstruction

- At this point clustering is ideal. DSSD doesn't produce ghost hits.
- No magnetic field, thus no Lorentz shift.
- Reconstructed hit position is determined using the relative E_{dep} : $u = \sum u_i E dep_i^{relative}$

Next steps:

- more realistic digitization;
- fair clustering;
- proper DSSD hit reconstruction.

Track reconstruction algorithm

- Find all combinations of hits that have several additional collinear hits;
- Merge tracks that have several common hits;
- Fit tracks using linear least squares

Vertex reconstruction algorithm

- Find perpendicular line for every tracks pair and picking its center as vertex
- Find geometric median of every pair vertex

Impact parameter resolution for different number of layers

Impact parameter resolution for different momenta

Squares – 8 layers (red MAPS, blue DSSD)

Triangles – 3 layers (red MAPS, blue DSSD)

Try of vertex finding

Comparison with Kalman fit

Number of Entries

From V. Andreev, S. Gerassimov

Comparison with Kalman fit

From V. Andreev, S. Gerassimov

Conclusion

- At this stage presented algorithm can find vertex quite precisely. But with more realistic model results expected to be much worse.
- Further simulation development should more materials, fake hits and other things that decrease algorithm efficiency.
- Next steps should be adding more precise detector geometry and integrating reconstruction algorithm based on Kalman filter developed by Vladimir Andreev and Sergei Gerassimov team

Old slides

Vertex resolution for different number of layers

- 6 particles
- Particles momenta: 1 GeV
- Silicon resolution: 50 mkm (red), 25 mkm (blue) and strips combination (green)

Vertex resolution for different momentum

- 6 particles
- 5 Its layers
- Silicon resolution: 50 mkm (red), 25 mkm (blue) and strips combination (green)

Vertex resolution for different number of layers

- 6 particles
- Particles momenta: 1 GeV
- Particles momenta: 1 GeV (red) and 3 GeV (blue)

Track's distance of closest approach for different polar angle

- 1 particles
- 5 Its layers
- Particles momenta: 1 GeV (blue) and 3 GeV (red)

Vertex resolution for different number of particles

- 5 Its layers
- Particles momenta: 1 GeV
- Silicon resolution: 50 mkm (red), 25 mkm (blue) and strips combination (green)

Current inner tracker geometry

From N. Zamyatin

	Number of Sensors per ladder	Number of ladders	Number of Sensors	Area, m ² Area of 1 MAPS 4,5 cm ² Area of 1 DSSD 40 cm ²
1 layer – MAPS	10	12 (L=150 мм)	$10 \times 12 = 120$	0,054
2 layer – MAPS	18	20 (L=270 мм)	$18 \times 20 = 360$	0,162
3 layer – MAPS	26	28 (L=390 мм)	$26 \times 28 = 728$	0,327
4 layer – DSSD	8	19 (L= 496 мм)	$8 \times 19 = 152$	0,603
5 layer – DSSD	10	23 (L=620 мм)	$10 \times 23 = 230$	0,912
6 layer – DSSD	12	27 (L=746 мм)	$12 \times 27 = 324$	1,285
7 layer – DSSD	14	31 (L=870 мм)	$14 \times 31 = 434$	1,722
8 layer – DSSD	16	35 (L=996 мм)	$16 \times 35 = 560$	2,222
Total for barrel			Number of MAPS = 1208	Total area MAPS =0,54 m ²
			Number of DSSD = 1700	Total area DSSD = $6,74 \text{ m}^2$

Layers number

• Muon pair with p=1GeV

Hits in track equals number of layers:

Layers	5	6	7	8
Tracks reco eff	0.944	0.918	0.896	0.8694
Verteces reco eff	0.892	0.843	0.803	0.7558
Mean d0, [mkm]	214	234	261	291
Std dev d0, [mkm]	214	226	240	257

Hits in track equals number of layers minus one:

Layers	5	6	7	8
Tracks eff	0.99995	0.999	0.995	0.996
Verteces eff	0.9995	0.998	0.991	0.991
Mean d0 [mkm]	215	233	260	285
Std dev d0 [mkm]	215	227	238	252

$\{\sin(a), \sin(a)\cos(a)\}$

Effect of MAPS and DSSD resolution

- Muon pair with p=1GeV
- 5 layers
- Min 5 hits

TracksRecoEff: 0.9001 VertecesRecoEff: 0.8105

TracksRecoEff: 0.89985 VertecesRecoEff: 0.8101

Different momenta

- Muon pair
- 5 layers
- Min 4 hits

P = 2 GeV

TracksRecoEff: 0.9425 VertecesRecoEff: 0.8874

 $P = 0.5 \, GeV$

TracksRecoEff: 0.9456 VertecesRecoEff: 0.8934