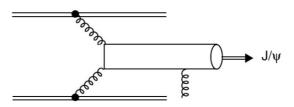
Charmonium production at SPD

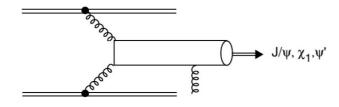

Igor Denisenko

iden@jinr.ru

SPD weekly meeting 06.05.2019

Motivation

- I. Extraction of TMD PDFs from DY is very complicated due to large background mostly from pion decays.
- II. J/ ψ production
 - a) is sensitive to quark and gluon pdf,


06.05.2019

- b) has large cross-section and have very distinct signal in the dimuon mode,
- c) is theoretically ambiguous,
- d) is a sum of direct and feed-down processes.

III. J/ ψ production is complimentary to the DY and prompt photons studies.

- IV. Study and verification of J/ ψ production mechanisms would be crucial for extraction of gluon pdf in AMBER at similar c.m.s. energies.
- **2** Charmonium production at SPD

For e.c.m. 24-26 GeV

- Cross-section of 150-200 nb
- Expected statistics is 20M per year
- Clean dimuon mode (9-12 nb in dimuon mode)
- Sensitive to gluon and quark pdf
- Suggested to measure Sivers effect for gluons. Might be possible to study quark asymmetries.

Feed-down contributions:

30-40% of J/ ψ are produced in χ_{c1} , χ_{c2} , and ψ (2S) decays, thus complicating the analysis kinematic distributions.

$\psi(2S)$ is free from feed-down contributions,

but statistics in dimuon mode is suppressed by aprox. 60.

 $M_{_{1+1-}} > 4 \text{ GeV}$:

- Cross-section 0.06-0.07 nb
- Expected statistics ~100K

B Charmonium production at SPD

Color evaporation models (CEM)

- collinear factorization (old)
- Improved CEM: k_{T} -factorization similar to PRA (e.g. Phys. Rev. D 98, 114029 (2018))

NRQCD

- collinear factorization (old)
- PRA and TMD factorization

NRQCD in collinear factorization

Phys.Rev.D54:2005,1996

For the process $A + B \rightarrow H + X$ in the collinear factorization:

$$\sigma_H = \sum_{i,j} \int_0^1 dx_1 dx_2 f_{i/A}(x_1) f_{i/B}(x_2) \hat{\sigma}(ij \to H).$$

Objecture of the cross-section factorization to short-distance ($x \approx 1/m_c$) and long-distance parts:

$$\hat{\sigma}(ij \to H) = \sum_{n} C^{ij}_{Q\bar{Q}[n]} \langle O^{H}_{n} \rangle.$$

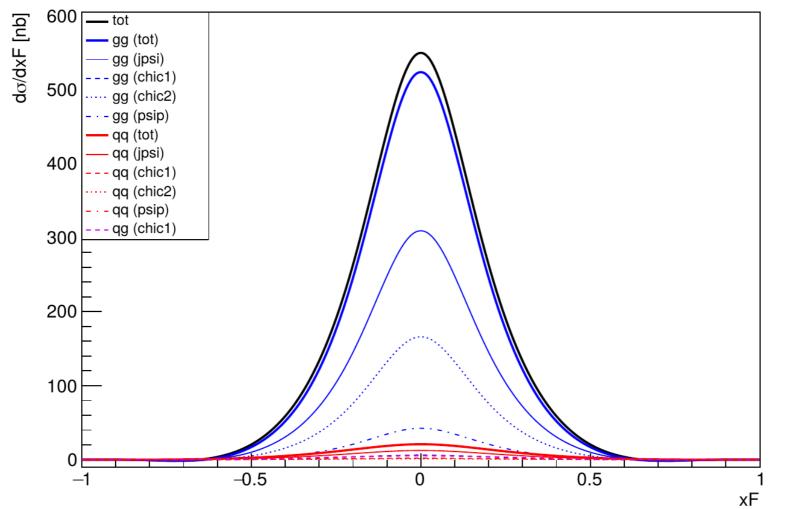
 $C_{Q\bar{Q}[n]}^{ij}$ (SDC) describe heavy quark pair production, $\langle O_n^H \rangle$ long distance matrix elements (LDME) describe its hadronization to quarkonium H and $n = {}^{2S+1} L_J^{(1,8)}$. **Proven only for sufficiently large** p_T .

2 Hierarchy of LDME $\langle O_n^H \rangle$ with respect to v ($v^2 \approx 0.2 - 0.3$ for charmonium).

Expression for cross-section is a **double** series in α_s and v. There are indications that the series is well-converged.

NRQCD in collinear factorization

Ingredients:

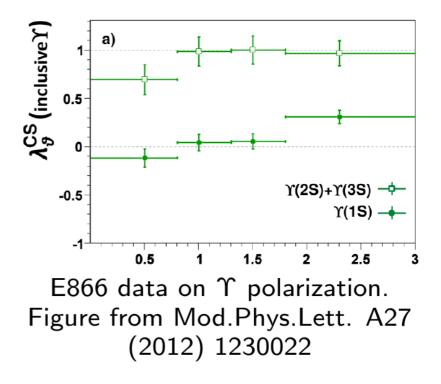

- **SDC** are determined from NRQCD.
- The singlet LDME are determined from charmonium decays or charmonium wave function in potential models $(O(v^2))$.
- The octet LDME are determined from the fits to experimental data.
- The are lattice calculations only for (O₁^{χ_{cJ}}(³P_J)) and (O₈^{χ_{cJ}}(³S₁)) (Phys.Rev.Lett.77(1996)2376). They are reasonably consistent with global fits (Braaten, Lectures on NRQCD factorization).

Predictions:

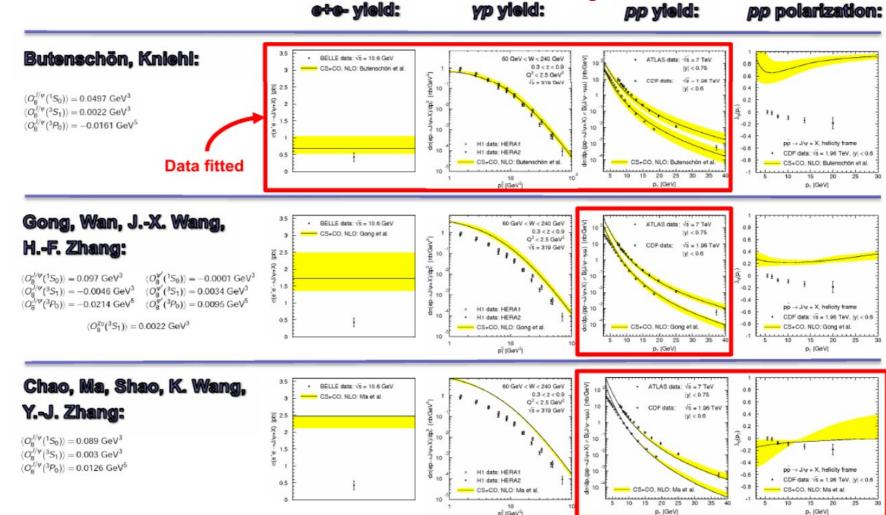
- x_F, separate contributions from quark-antiquark annihilation and gluon-gluon fusion;
- p_T in for $p_T > 2m_c$ for collinear factorization (not at SPD energies);
- charmonia polarization;
- \sqrt{s} dependence.

x_F: contributions of subprocesses

do/dxF [nb]



- Formulas and LDME from Phys.Rev.D54:2005,1996
- PDF: NNPDF23 NLO


J/ψ polarization

- $d\sigma/dcos\theta \sim 1 + \alpha$
 - α = 1 transverse
 - $\alpha = -1 longitudinal$
- The J/ψ polarization is sensitive to elementary J/ψ production process and is a nontrivial test to the NRQCD.
- Polarization of $\chi_{\mbox{\tiny cJ}}$ states has not been measured yet.
- Previous measurements from fixedtarget experiments are not precise and may suffer from 1D efficiency corrections (Faccioli, Mod. Phys. Lett. A 27. 1230022(2012))

Feed-down contribution may play significant role in the polarization puzzle!

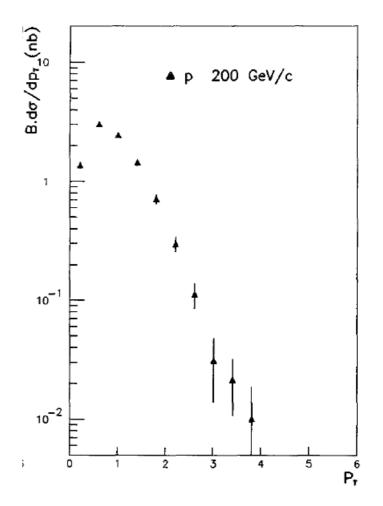
LDME

p²[GeV²]

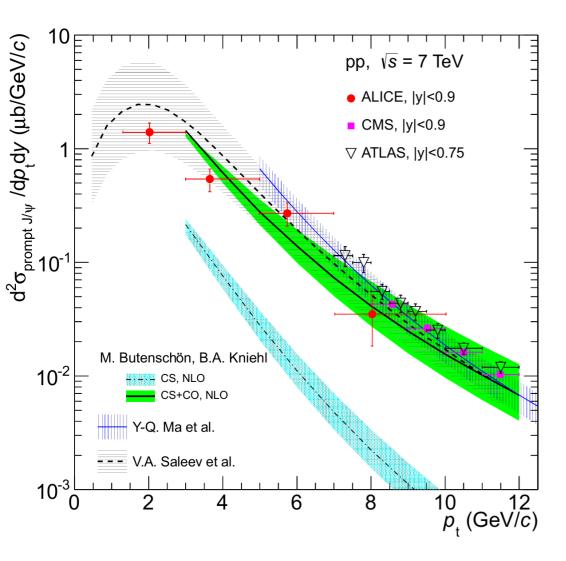
Slide borrowed from M. Butenschoen DIS 2016 (DESY Hamburg)

Details in Mod.Phys.Lett.A,Vol.28,No.9(2013) 1350027.

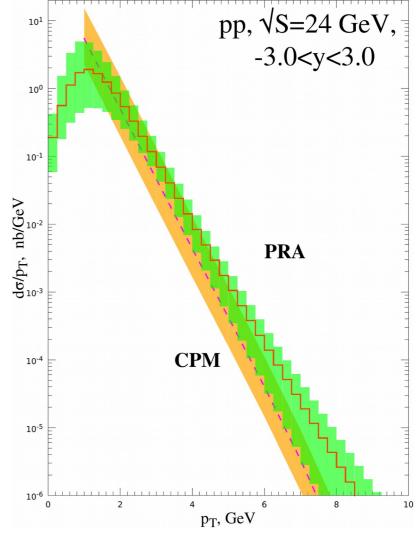
No SDML set can described all e^+e^- , γp , pp and pp polarization data.


Charmonium production at SPD

Theoretical aproaches for SPD


The SPD p_{T} range below 3-4 GeV is very complicated for the analysis:

- collinear factorization is not applicable below 4 GeV (or even higher values) and the p_{τ} spectrum diverges for $p_{\tau} \rightarrow 0$,
- TMD factorization is valid for $p_{T} << M_{I/\psi}$,
- Parton Reggeization Approach (PRA) is expected to be valid in the whole expected p_T range.


NA3 sqrt(s) = 19.4 GeV

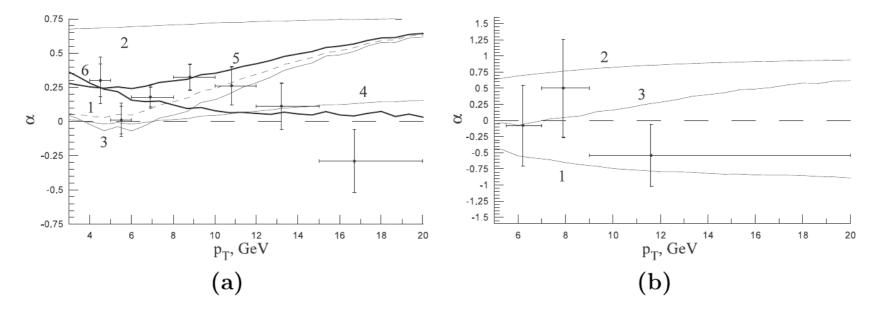
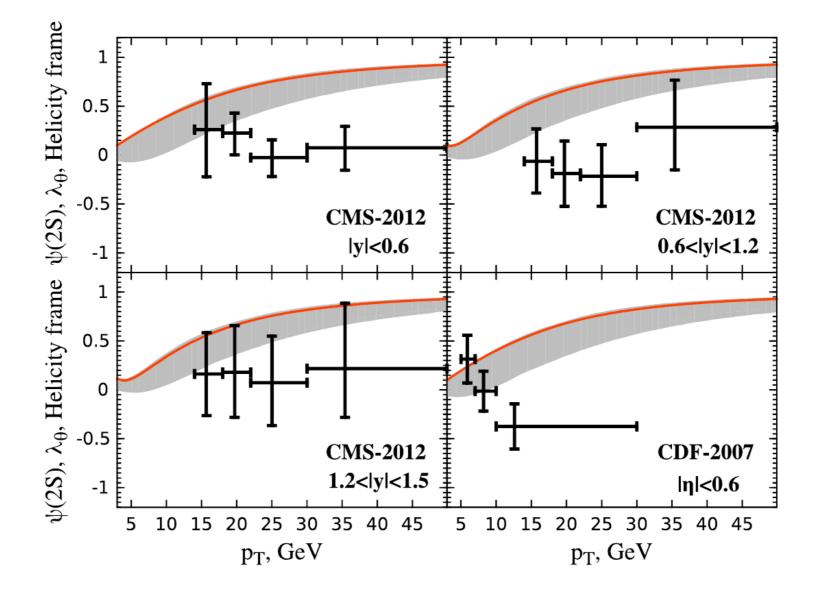
PRA approach

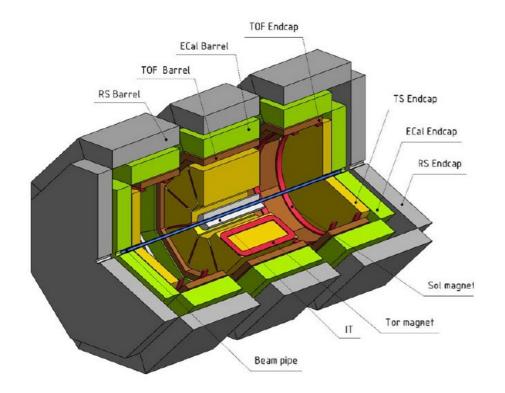
ALICE Collaboration, JHEP 1211 (2012) 065

CPM is NLO CPM calculation by B.A. Kniehl, and M. Butenschoen.

PRA is LO Parton Reggeization Approache by M.Nefedov and V. Saleev.

J/ψ polarization in PRA

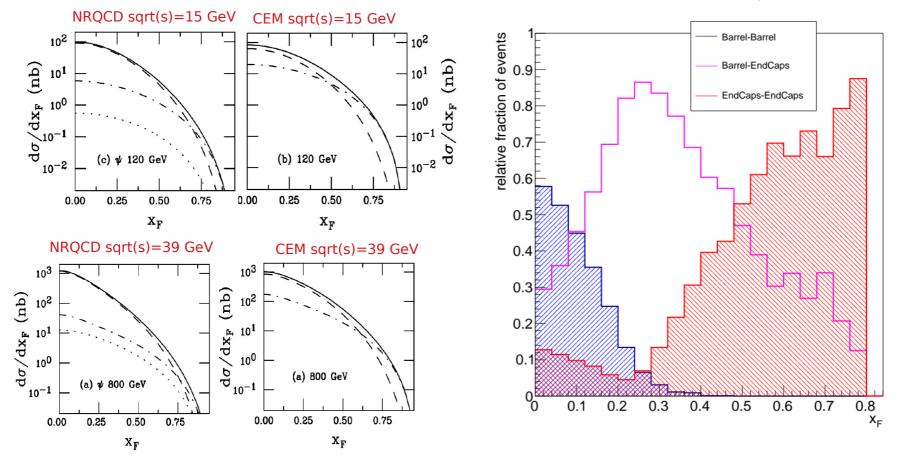

Figure 1a. Polarization parameter $\alpha(p_T)$ for prompt J/ψ production. Curve 1 — the direct production channel, 2 — J/ψ from $\chi_c \to J/\Psi\gamma$ decays, 3 — J/ψ from $\psi' \to J/\psi$ decays, 4 — J/ψ from $\psi' \to \chi_c \to J/\psi$ decays, 5 — the sum of (1)-(4) terms , 6 — the CSM prediction. Figure 1b. Polarization parameter $\alpha(p_T)$ for direct ψ' meson production. Curve 1 — the CSM prediction, 2 — the color-octet mechanism prediction, 3 — the direct production channel.

12 Charmonium production at SPD

$\psi(2S)$ polarization in PRA

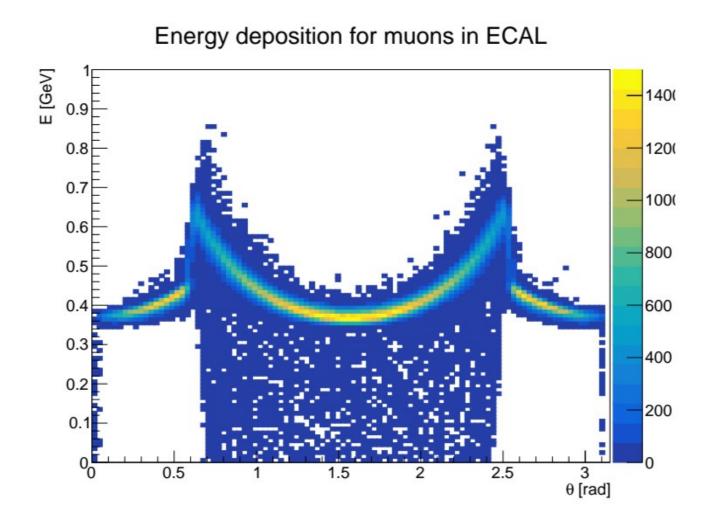
Detector simulation status

Detector is mostly available as material maps.


- magnetic system and field: available
- vertex detector: preliminary set-up
- tof: not implemented
- tracking system: very preliminary set-up, material map
- electromagnetic calorimeter: material map (detailed description is available, but it is not default)
- range system: material map, detailed description is expected soon

Tracking performance is uncertain!

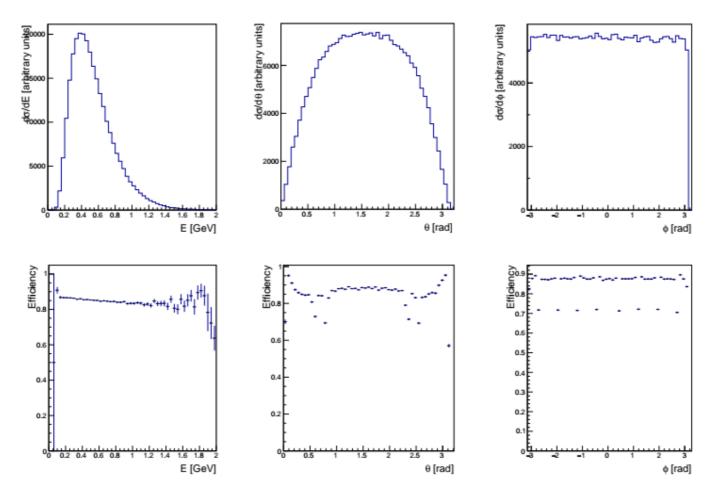
Barrel/Endcap distribution of muons


Phys.Rev.C61:035203,2000

Pythia6 gg $\rightarrow J/\psi X$


High performance of endcaps is essential for medium and high x_F values, where relative contribution from $q\overline{q}$ annihilation may become significant.

Energy loss for mouns


- Most of the energy muons lose in ECAL.
- The energy deposition agree with expectations.

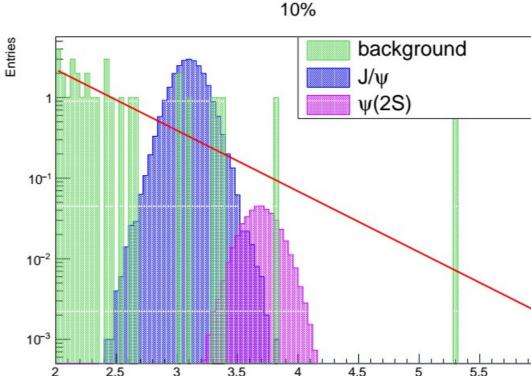
Acceptance for mouns

- Process: Pythia6 gg $\rightarrow J/\psi X$
- 93% of muons rich the range system

Acceptance for photons from $\chi_{c1} \rightarrow \gamma J/\psi$

Kinematic distributions for photon from the $gg \rightarrow \chi_{c1}X$, $\chi_{c1} \rightarrow \gamma J/\psi$ process (Pythia 6). The total acceptance (muons reach RS and photon reaches ECAL) for $\chi_{cJ} \rightarrow \gamma J/\psi$ is approximately 80%.

18 Charmonium production at SPD


On resolution

Generator-level simulation:

- 100 millions minimum bias events (Pythia6)
- J/ψ cross-section 200 nb
- ψ(2S) cross-section 1/60 of J/ψ
 cross-section
- Muons produced within
 - r<750 cm
 - |z| < 1000 cm

Base cuts:

- distance to the beam axis < 2 mm
- distance between muon tracks < 1 cm
- $|\cos\theta| < 0.9$ for muons

Momentum resolution:

06.05.2019

M(μ⁺μ⁻) [GeV]

On resolution

Generator-level simulation:

- 100 millions minimum bias events (Pythia6)
- J/ψ cross-section 200 nb
- ψ(2S) cross-section 1/60 of J/ψ
 cross-section
- Muons produced within
 - r<750 cm
 - |z| < 1000 cm

Base cuts:

- distance to the beam axis < 2 mm
- distance between muon tracks < 1 cm
- $|\cos\theta| < 0.9$ for muons

3.5

4.5

5

5.5

M(μ⁺μ⁻) [GeV]

 10^{-2}

 10^{-3}

2

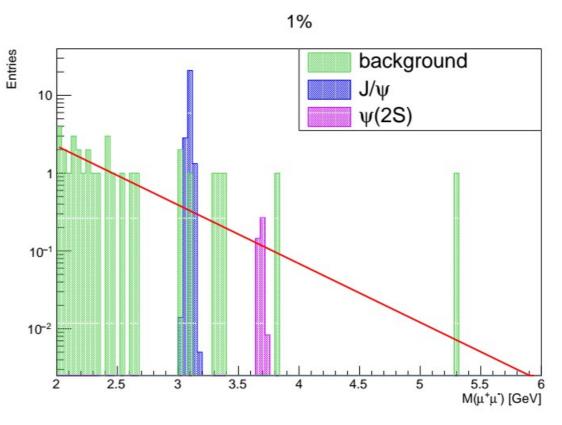
2.5

3

Momentum resolution:

20 Charmonium production at SPD

On resolution


Generator-level simulation:

- 100 millions minimum bias events (Pythia6)
- J/ψ cross-section 200 nb
- ψ(2S) cross-section 1/60 of J/ψ cross-section
- Muons produced within
 - r<750 cm
 - |z| < 1000 cm

Base cuts:

- distance to the beam axis < 2 mm
- distance between muon tracks < 1 cm
- $|\cos\theta| < 0.9$ for muons

Charmonium group

Charmonium group:

- Alexey Guskov
- Igor Denisenko
- Jose Rubiera (all plots in this talk obtained with SPDROOT)
- Dario Zaldivar

Summary

- Charmonia production is a powerful tool to probe parton distributions. It is complimentary to DY and prompt photons.
- We have a group, but in the absence of tracking and detailed description of detector subsystems and their performance we can do only very basic simulation of physical processes.
- Good momentum resolution is essential for charmonium program: values of the order of 10% would reduce SPD experimental capabilities to ones of the previous fixed-target experiments.
- We work with V. Saleev to get predictions from the up-to-date theoretical approaches.
- For the moment exclusive charmonia production has not been considered, but may be also interesting.

Backup

24 Charmonium production at SPD

J/ψ hadroproduction: from high to low energies

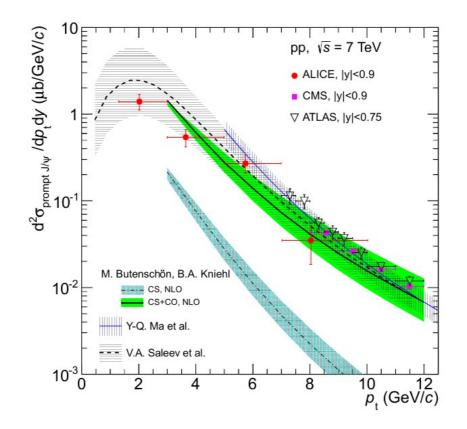
V.A. Saleev *

in collaboration with M.A. Nefedov^{*}, A.V. Karpishkov^{*} and A.V. Shipilova^{*}, B.A. Kniehl^{**}, and M. Butenschoen^{**}

Samara National Research University^(*), and Hamburg University^(**)

06.05.2015 SPD-NICA, JINR, Dubna

NICA:


- $\bigcirc \sqrt{S} = 24 \text{ GeV}$
- **2** |y| < 3
- $\bigcirc 0 < p_T < 6 \text{ GeV}$
- **④** Prompt production = direct + from decays ψ', χ_c

Theoretical approaches which can be used

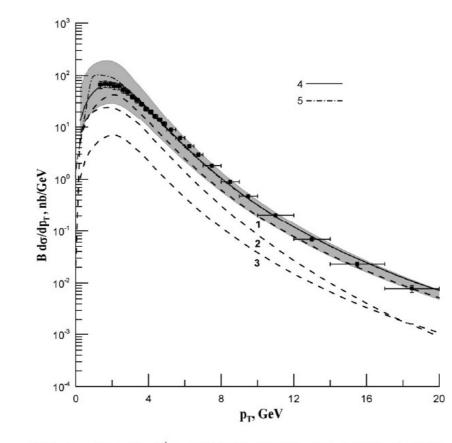
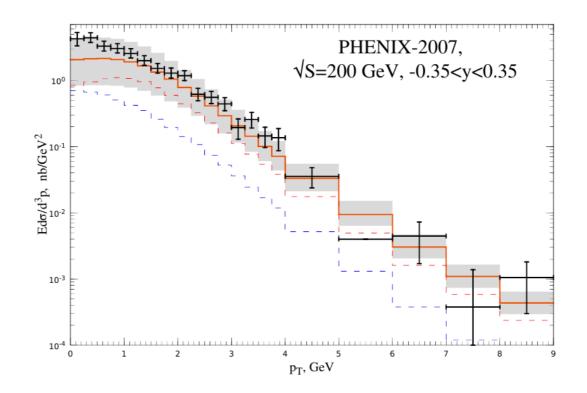
- CPM + NLO QCD, only for $p_T > 3 \text{ GeV}$
- 2 TMD-factorization (Collins-Soper-Sterman), only for $p_T \ll M_{\psi} \sim 3$ GeV.
- **3** Parton Reggeization Approach can be used for all p_T .

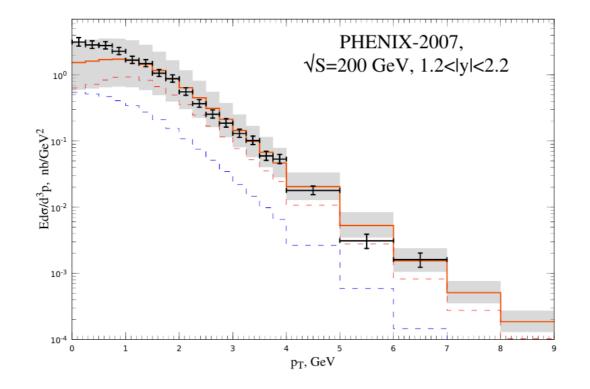
Prompt J/ψ production at high energies in LO PRA and NLO CPM

Fig. 4: $\frac{d\sigma_{\text{prompt J/\psi}}}{dp_t dy}$ as a function of p_t compared to results from ATLAS [16] and CMS [18] at mid-rapidity and to theoretical calculations [19–21]. The error bars represent the quadratic sum of the statistical and systematic uncertainties.

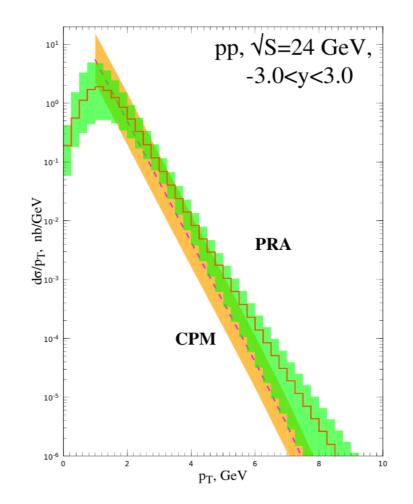
28 Charmonium production at SPD

Prompt J/ψ production at high energies in PRA


FIG. 4. Prompt J/ψ transverse-momentum spectrum from CDF Collaboration [28], $\sqrt{S} = 1.96$ TeV, |y| < 0.6, (1) is the direct production, (2) from χ_{cJ} decays, (3) from ψ' decays, (4) sum of all contributions (KMR unPDF), (5) sum of all contributions (Blümlein unPDF).

Prompt J/ψ production at high energies in PRA


Blue dashed curve is color-singlet contribution, red dashed curve is color-octet contribution, red solid curve is their sum. The gray band for the solid red curve shows scale-uncertainty of our prediction.

Prompt J/ψ production at high energies in PRA

Blue dashed curve is color-singlet contribution, red dashed curve is color-octet contribution, red solid curve is their sum.

Prompt J/ψ production at high energies

CPM is NLO CPM calculation by B.A. Kniehl, and M. Butenschoen.

PRA is LO Parton Reggeization Approache by M.Nefedov and V. Saleev.

2 Charmonium production at SPD