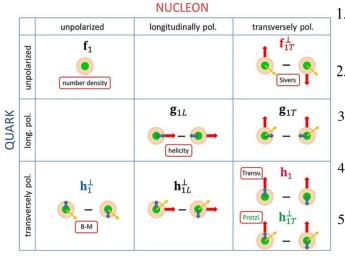
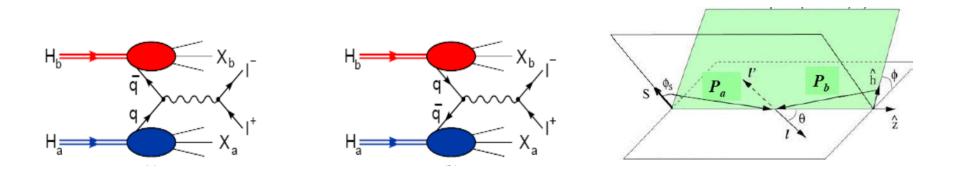

Drell-Yan studies with SPD. Status and Plans.

on behalf of DY team

F

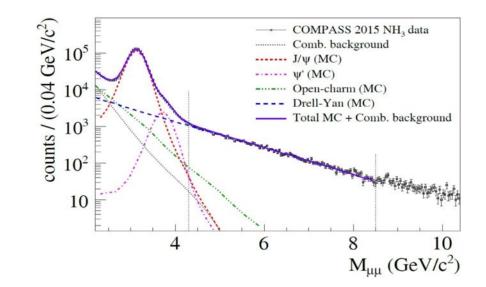
- **1. Introduction**
- 2. Cross sections and statistics
- 3. Background studies
- 4. MC weighted asymmetries
- 5. Some estimations and proposals
- 6. Plans





Drell-Yan studies with SPD. Status and Plans. Introduction.

- 1. Transversity: $A_{UT}^{\sin(\phi+\phi_S)}$, represents the number distribution of transversely polarized quarks in a transversely polarized nucleon;
- 2. Sivers: $A_{UT}^{\sin(\phi-\phi_S)}$, represents the distribution over the transverse momentum of non-polarized quarks in a transversely polarized nucleon;
- 3. Pretzelosity: $A_{UT}^{\sin(3\phi-\phi_S)}$, represents the distribution over the transverse momentum of transversely polarized quarks in a transversely polarized nucleon;
- 4. Boer-Mulders: $A_{UU}^{\cos(2\phi_h)}$, represents the distribution over the transverse momentum of transversely polarized quarks in a non-polarized nucleon;
- 5. Worm-Gears: $A_{UL}^{\cos(2\phi_h)}$, represents the distribution over the transverse momentum of longitudinally polarized quarks in a longitudinally polarized nucleon.

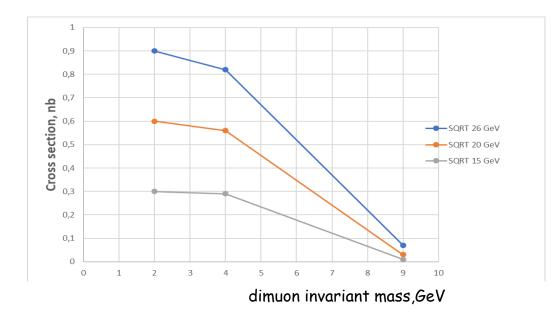


Drell-Yan studies with SPD. Status and Plans. Cross sections and statistics.

Estimation of DY pairs production rates in Pythia6.4

DY via μ - μ +, $\int s$ = 26 GeV Some settings: MSEL=0 ! turn OFF global process selection MSUB(1)=1 ! turn ON q+qb -> gamma*/Z0 -> mu+mu- (Drell-Yan process) MSTP(43)=1 ! only gamma* included (Drell-Yan) MDME(184,1)=1 ! Z0 -> mu+mu- turned ON

$M_{\mu\mu}~{ m GeV}$	σ tot, nb		
>2	1.23		
>3	0.27		
>4	0.07		



Drell-Yan studies with SPD. Status and Plans. Cross sections and statistics.

For various invariant mass ranges with $P_{\mu} > 1 \text{ GeV}$ $\sigma_{range} = \sigma_{tot} \times N_{evt range} / N_{evt}$

	<i>M</i> _{μμ} 2 - 11 GeV	<i>Μ_{μμ}</i> 2 - 4 GeV	<i>Μ_{μμ}</i> 4 - 9 GeV	Μ _{μμ} 9 - 11 GeV	
√s GeV	σ _{tot} , nb	σ _{tot} , nb	σ_{tot} , nb	σ _{tot} , nb	
<mark>26</mark>	<mark>0.9</mark>	<mark>0.82</mark>	<mark>0.07</mark>	<0.01	
20	0.6	0.56	0.03	<0.01	
15	0.3	0.29	0.009	<0.01	

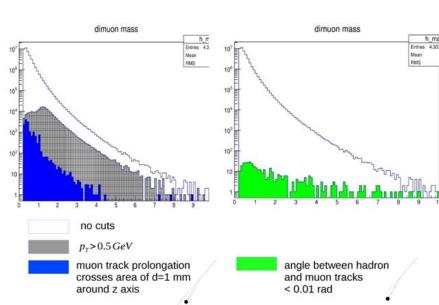
Drell-Yan studies with SPD. Status and Plans. Cross sections and statistics.

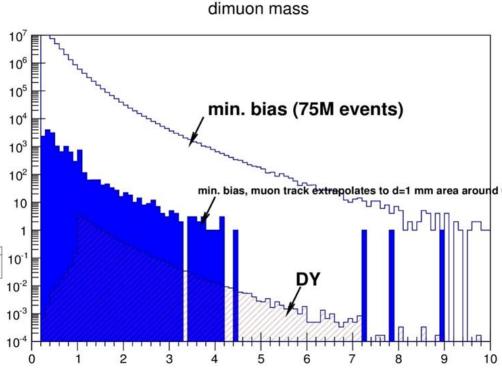
DY pairs production rate vs. Luminosity (\sqrt{s} = 26 GeV) per month $R = L \times \sigma \times Time \times Eff$

	<i>M_{μμ}</i> = 2-9, GeV			$M_{\mu\mu}$	$M_{\mu\mu}$ = 2-4, GeV			$M_{\mu\mu}$ = 4-9, GeV		
	Eff	Eff	Eff	Eff	Eff	Eff	Eff	Eff	Eff	
L,	100%	80%	60%	100%	80%	60%	100%	80%	60%	
cm ⁻² s ⁻¹										
	$R \times 10^3$				$R \times 10^3$			R × 10 ³		
1x10 ³¹	23	19	14	21	17	13	1,8	1.4	1	
5x10 ³¹	162	93	70	103	82	61	9	7,2	1.4	
1x10 ³²	<mark>233</mark>	<mark>169</mark>	<mark>139</mark>	<mark>207</mark>	<mark>165</mark>	<mark>124</mark>	<mark>18</mark>	<mark>14</mark>	<mark>10</mark>	
2x10 ³²	466	338	278	415	332	250	36	29	21	

COMPASS-II proposal

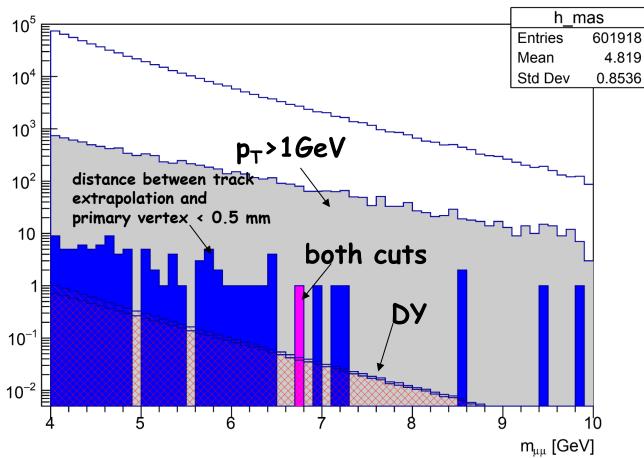
	R (day)		R (month) ×10 ³		
π^{-} beam, GeV	Μμμ=2-2.5 Μμμ=4-9		Μμμ=2-2.5	Μμμ=4-9	
106	4013 440		120	13	
160	4617	695	139	21	
190	4858	809	146	24	



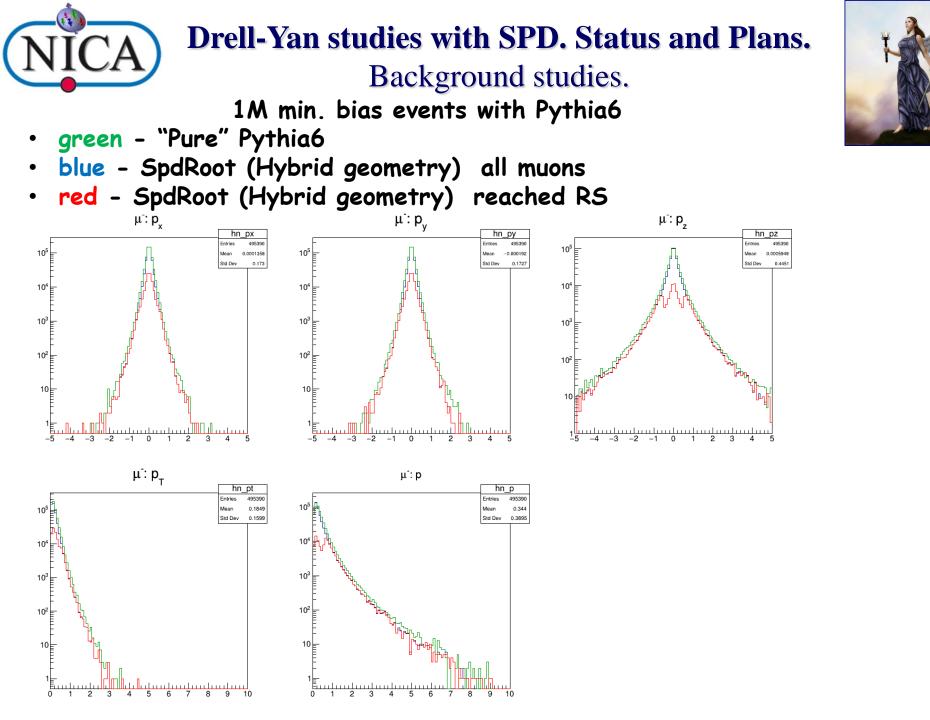

Drell-Yan studies with SPD. Status and Plans. Background studies (old results).

- 2 proton beams with E=12 GeV
- Only process $q \bar{q} \rightarrow \gamma^* \rightarrow \mu^+ \mu^-$
- $m_{\mu\mu} > 1 \, GeV$
- Decays of π^{\pm} , K^{\pm} , K^{0}_{L} turned on
- 10⁵ events
- $\sigma_{tot} = 8.7 \, nb$ (ratio $\sigma_{tot}(MB) / \sigma_{tot}(DY) \approx 4.5 \cdot 10^6$)
- Only muons produced in volume with L=8 m and D=7 m were taken into account.

• (For
$$m_{\mu\mu} > 3 \, GeV \, \sigma_{tot} = 0.23 \, nb$$
)

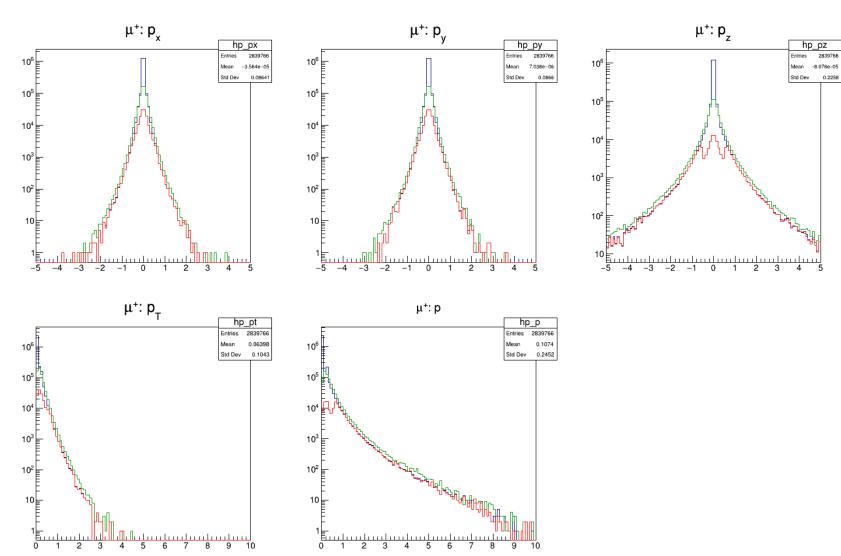

~1:60 signal/background - 07.2018

Drell-Yan studies with SPD. Status and Plans. Background studies (new results).

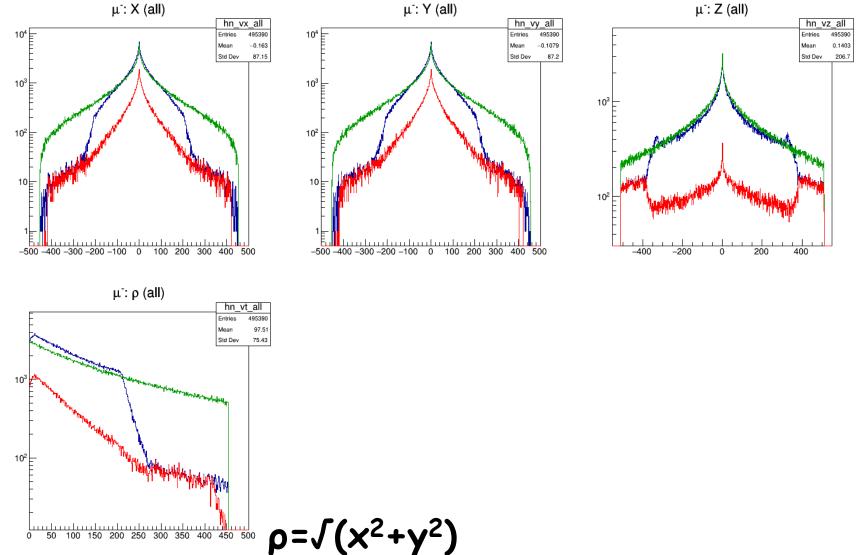

10⁶ DY events in range $m_{\mu\mu}$ > 4 GeV. $\sigma_{tot,DY}$ = 0.074 nb

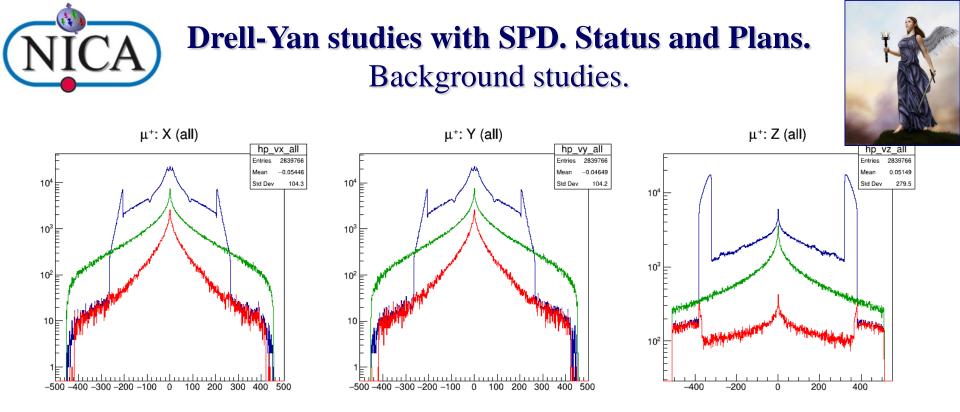
4,9·10⁹ min. bias events in Pythia 6. $\sigma_{tot,MB} = 39 \text{ mb.} \sim 10^{-4}$ of these events contribute to background in our invariant mass range.

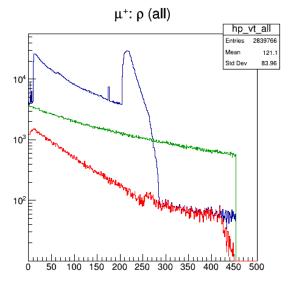
dimuon mass

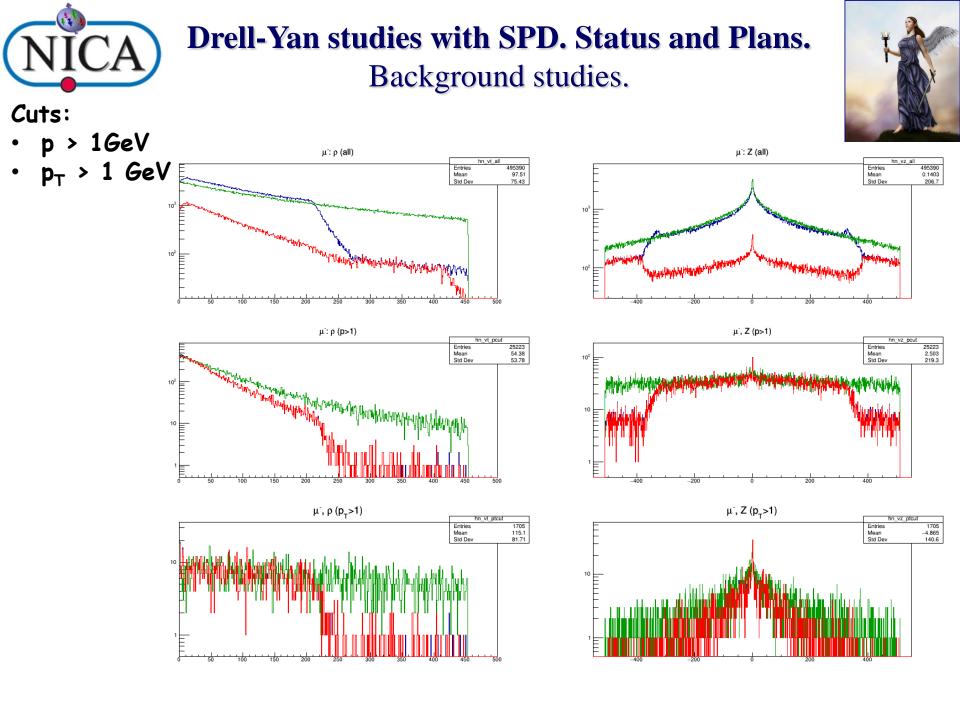


Drell-Yan studies with SPD. Status and Plans. Background studies.

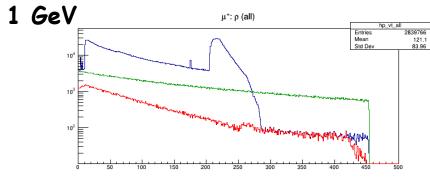


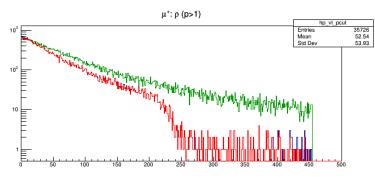


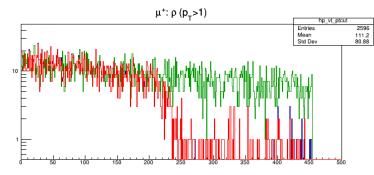

0

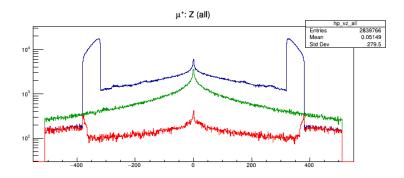

Drell-Yan studies with SPD. Status and Plans. Background studies.

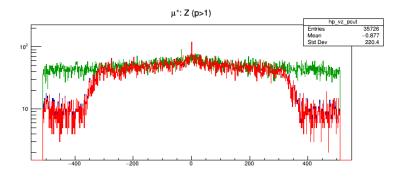
Drell-Yan studies with SPD. Status and Plans. Background studies.

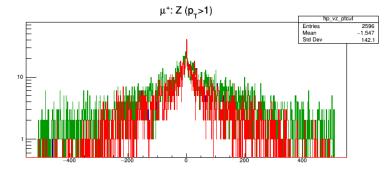


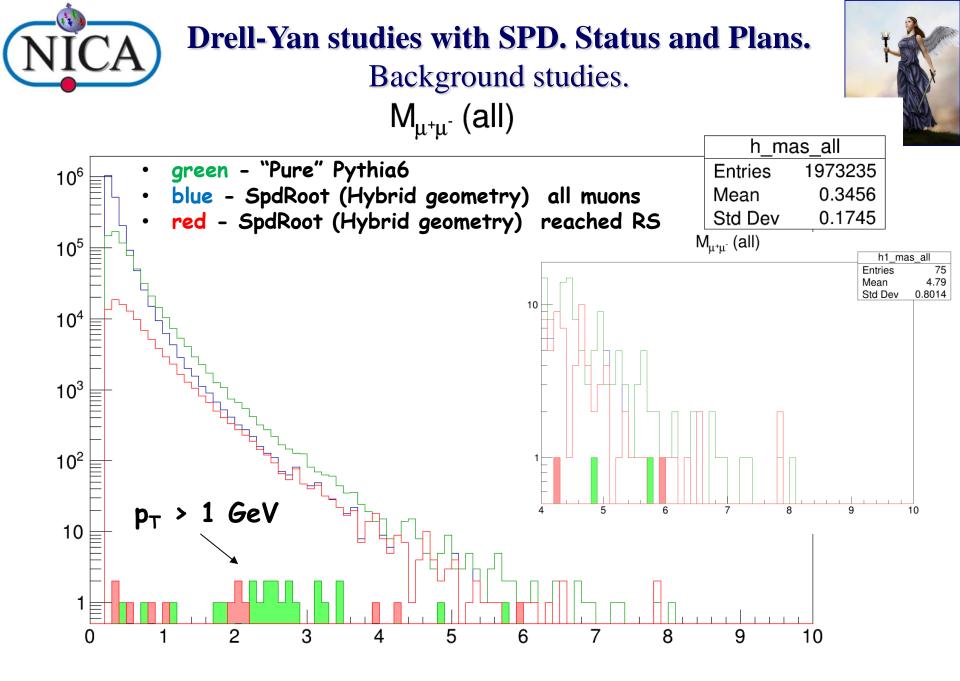

Cuts:


PT


• p > 1GeV


>





Drell-Yan studies with SPD. Status and Plans.

MC weighted asymmetries (like B-M).

SETS	%
PV	100
RS	96.7
RS-BB	27.3
RS-EE	16.2
RS-BEEB	53.2

Hybrid set-up

 N_{DY} generated events = 1× 10⁶ [4.0 ->]

- N muon pairs [4-9] = (PV) 100%
- N muon pairs [4-9] = (RS) 96 %

• 4.0
$$GeV/c^2 < M_{\mu\mu} < 9.0 \ GeV/c^2$$

• $\langle P_b \rangle = 1.0$

Boer-Mulders

weight = $\sigma_0 + kP \cos 2\varphi_{CS}$

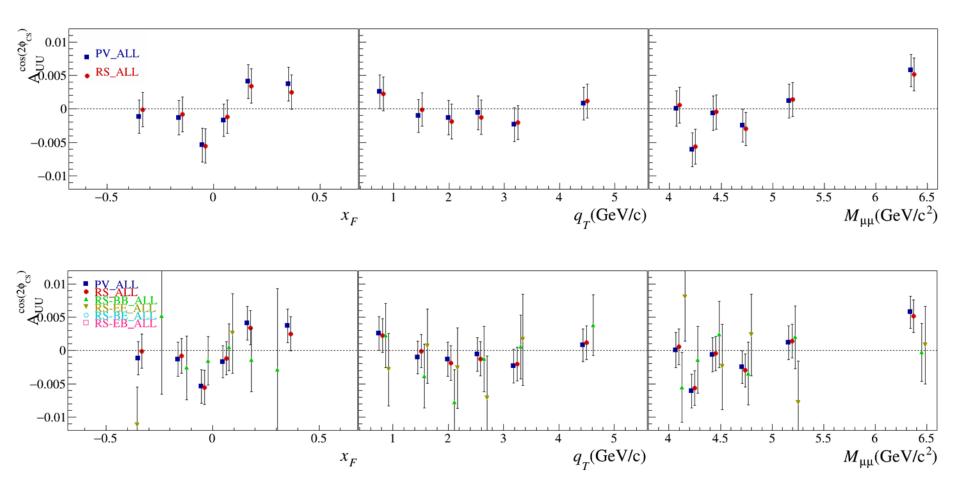
$$\sigma_0 = 1.0$$

 $k = 0.5$
 $P = \pm 1$

$$A = \frac{N_{w,2} - N_{w,1}}{N_{w,2} + N_{w,1}}$$

$$N_{w,1} = \sum_{1}^{N_1} (\sigma_0 - k \cos 2\varphi_{CS})$$
$$N_{w,2} = \sum_{1}^{N_2} (\sigma_0 + k \cos 2\varphi_{CS})$$

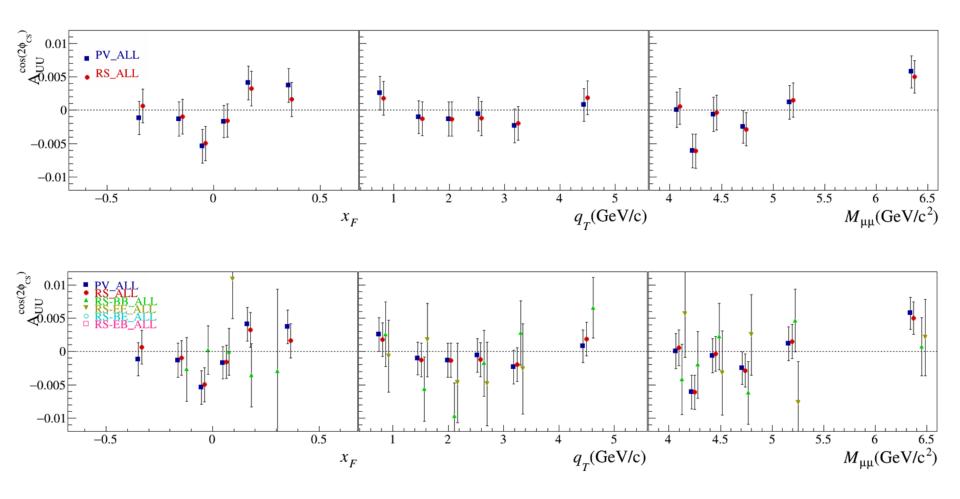
1


$$dA = \frac{1}{\sqrt{N_1 + N_2}}$$

Drell-Yan studies with SPD. Status and Plans. MC weighted asymmetries(like B-M).

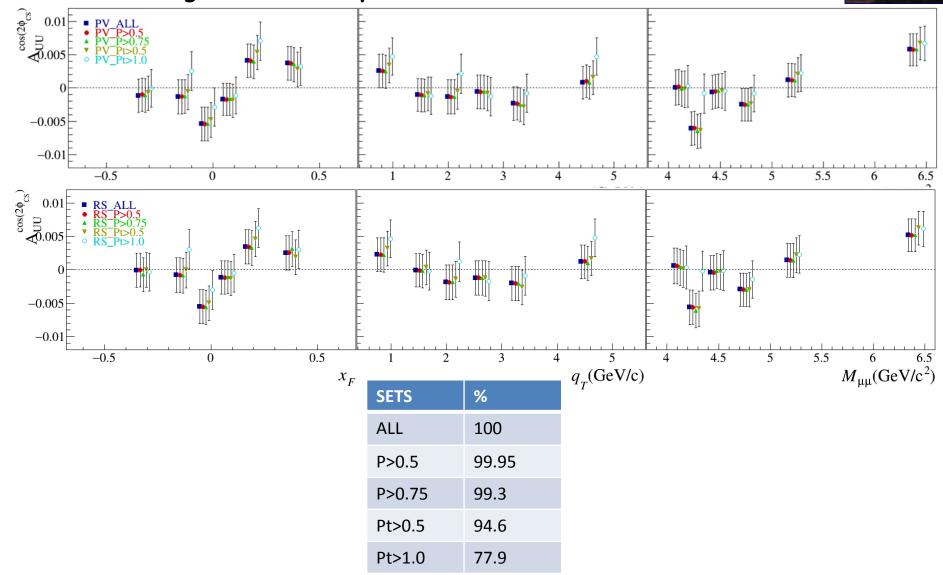
t

Standart Magnetic field map in SPDRoot



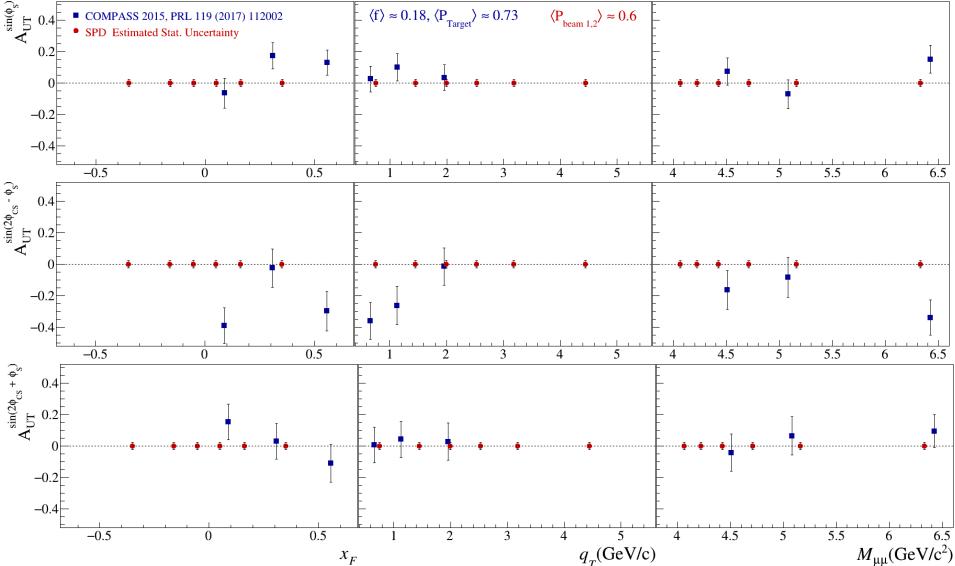
Drell-Yan studies with SPD. Status and Plans. MC weighted asymmetries(like B-M).

Magnetic field map in SPDRoot x2



Drell-Yan studies with SPD. Status and Plans. MC weighted asymmetries(like B-M).

t


Standart Magnetic field map in SPDRoot

Drell-Yan studies with SPD. Status and Plans. MC weighted asymmetries (comparison with COMPASS).

Drell-Yan studies with SPD. Status and Plans.

Some estimations and proposals.

For BG studies:

- one needs to add materials as possible;
- responses in ECAL and RS;
- tracking;
- vertex;
- PID for DY via e+e-(aerogel blocks or other)

For ASYM studies:

- one needs to have preliminary tracking;
- magnet field maps (toroid vs solenoid);
- theoretical predictions on asyms for NICA;

From NICA:

- one needs to have solid parameters of NICA (lumi, Nbanches etc);
- Beam structure (IP sizes etc);
- Estimations on polarization's values;
- Run time (statistics).

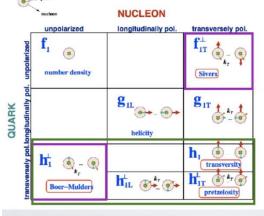
Drell-Yan studies with SPD. Status and Plans. Plans.

The second secon

- Background studies
 cuts, vertex, tracking dets,
 PID dets, beam params etc
- MC asymmetries studies
- Estimation of feasibility of exclusive DY
- Deuteron tensor structure via DY

Results on all tasks have to be done for the end of September 2019 <u>DY Team:</u> Akhunzyanov Ruslan Gribowsky Alexandr Ivanov Artem Mescheryakov Gleb Nagaytsev Alexander

welcome to join



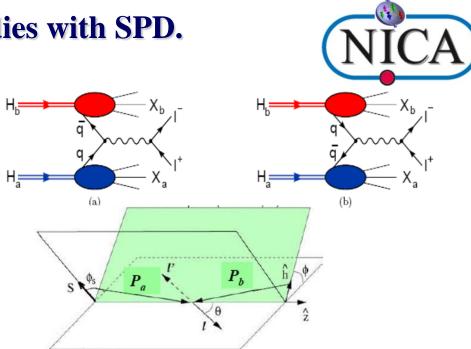
Backup slides

Drell-Yan studies with SPD.

3 PDFs are needed to describe nucleon structure in collinear approximation

8 PDFs are needed if we want to take into account intrinsic transverse momentum kt of quarks

T-odd


chiral-odd

 $\frac{d\sigma}{dx_a dx_b d^2 q_T d\Omega} = \frac{\alpha^2}{4Q^2} \times$

$$\begin{split} & \Big\{ \Big((1 + \cos^2 \theta) F_{UU}^1 + \sin^2 \theta \cos 2\phi F_{UU}^{\cos 2\phi} \Big) + S_{aL} \sin^2 \theta \sin 2\phi F_{LU}^{\sin 2\phi} + S_{bL} \sin^2 \theta \sin 2\phi F_{UL}^{\sin 2\phi} \\ & + \Big| \vec{S}_{aT} \Big| \Big[\sin(\phi - \phi_{S_a}) (1 + \cos^2 \theta) F_{TU}^{\sin(\phi - \phi_{S_a})} + \sin^2 \theta \Big(\sin(3\phi - \phi_{S_a}) F_{TU}^{\sin(3\phi - \phi_{S_a})} + \sin(\phi + \phi_{S_a}) F_{TU}^{\sin(\phi + \phi_{S_a})} \Big) \Big] \\ & + \Big| \vec{S}_{bT} \Big| \Big[\sin(\phi - \phi_{S_a}) (1 + \cos^2 \theta) F_{UT}^{\sin(\phi - \phi_{S_a})} + \sin^2 \theta \Big(\sin(3\phi - \phi_{S_a}) F_{UT}^{\sin(3\phi - \phi_{S_a})} + \sin(\phi + \phi_{S_a}) F_{UT}^{\sin(\phi + \phi_{S_a})} \Big) \Big] \\ & + S_{aL} S_{bL} \Big[\Big(1 + \cos^2 \theta \Big) F_{1L}^1 + \sin^2 \theta \cos 2\phi F_{LL}^{\cos 2\phi} \Big] \\ & (2.1.2) \\ & + S_{aL} \Big| \vec{S}_{bT} \Big| \Big[\cos(\phi - \phi_{S_a}) (1 + \cos^2 \theta) F_{LT}^{\cos(\phi - \phi_{S_a})} + \sin^2 \theta \Big(\cos(3\phi - \phi_{S_a}) F_{LT}^{\cos(3\phi - \phi_{S_a})} + \cos(\phi + \phi_{S_a}) F_{LT}^{\cos(\phi + \phi_{S_a})} \Big) \Big] \\ & + \Big| \vec{S}_{aT} \Big| \vec{S}_{bT} \Big| \Big[(1 + \cos^2 \theta) \Big(\cos(2\phi - \phi_{S_a} - \phi_{S_a}) F_{TT}^{\cos(2\phi - \phi_{S_a})} + \cos(\phi + \phi_{S_a}) F_{TL}^{\cos(\phi + \phi_{S_a})} \Big) \Big] \\ & + \Big| \vec{S}_{aT} \Big| \Big| \vec{S}_{bT} \Big| \Big[(1 + \cos^2 \theta) \Big(\cos(2\phi - \phi_{S_a} - \phi_{S_a}) F_{TT}^{\cos(2\phi - \phi_{S_a} - \phi_{S_a})} + \cos(\phi + \phi_{S_a}) F_{TL}^{\cos(\phi + \phi_{S_a})} \Big) \Big] \\ & + \Big| \vec{S}_{aT} \Big| \Big| \vec{S}_{bT} \Big| \Big[\sin^2 \theta \Big(\cos(\phi + \phi_{S_a}) F_{TT}^{\cos(\phi + \phi_{S_a})} + \cos(\phi + \phi_{S_a}) F_{TT}^{\cos(2\phi - \phi_{S_a}} - \phi_{S_a}) F_{TT}^{\cos(2\phi - \phi_{S_a} - \phi_{S_a})} \Big) F_{TT}^{\cos(2\phi - \phi_{S_a}} - \phi_{S_a}) F_{TT}^{\cos(2\phi - \phi_{S_a}} \Big) F_{TT}^{\cos(2\phi - \phi_{S_a}} \Big) \Big] \\ & + \Big| \vec{S}_{aT} \Big| \Big| \vec{S}_{bT} \Big| \Big[\sin^2 \theta \Big(\cos(2\phi - \phi_{S_a} + \phi_{S_a}) F_{TT}^{\cos(2\phi - \phi_{S_a} + \phi_{S_a}) F_{TT}^{\cos(2\phi - \phi_{S_a}} - \phi_{S_a} \Big) F_{TT}^{\cos(2\phi - \phi_{S_a}} - \phi_{S_a} \Big) F_{TT}^{\cos(2\phi - \phi_{S_a}} - \phi_{S_a} \Big) F_{TT}^{\cos(2\phi - \phi_{S_a}} \Big) \Big] \Big\} \\ & + \Big| \vec{S}_{aT} \Big| \Big| \vec{S}_{bT} \Big| \Big[\sin^2 \theta \Big(\cos(2\phi - \phi_{S_a} + \phi_{S_a}) F_{TT}^{\cos(2\phi - \phi_{S_a} + \phi_{S_a})} + \cos(2\phi + \phi_{S_a} - \phi_{S_a}) F_{TT}^{\cos(2\phi - \phi_{S_a}} - \phi_{S_a} \Big) F_{TT}^{\cos(2\phi - \phi_$$

where F_{jk}^{i} are the Structure Functions (SFs) connected to the corresponding PDFs. The SFs depend on four variables $P_a \cdot q$, $P_b \cdot q$, q_T and q^2 or on q_T , q^2 and the Bjorken variables of colliding hadrons, x_a , x_b ,

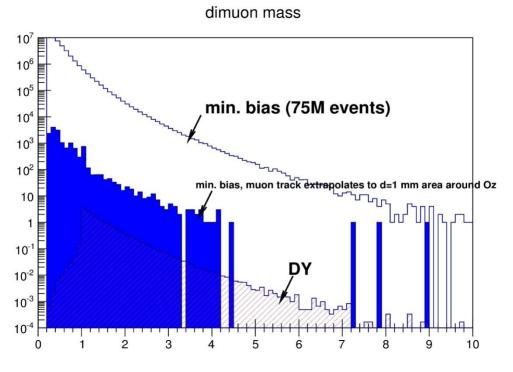
$$x_{a} = \frac{q^{2}}{2P_{a} \cdot q} = \sqrt{\frac{q^{2}}{s}}e^{y}, x_{b} = \frac{q^{2}}{2P_{b} \cdot q} = \sqrt{\frac{q^{2}}{s}}e^{-y}, y \text{ is the CM rapidity and}$$

The cross section cannot be measured directly because there is no single beam containing particles with the U, L and T polarization. To measure SFs entering this equation one can use the following procedure: first, to integrate cross section over the azimuthal angle Φs , second, following the SIDIS practice, to measure azimuthal asymmetries of the DY pair's production cross sections. The integration over the azimuthal angle Φ gives:

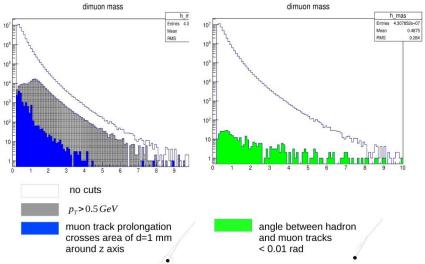
$$\sigma_{\text{int}} = \frac{d\sigma}{dx_{\text{a}} dx_{\text{b}} d^{2}q_{\text{T}} d\cos\theta} = \frac{\pi\alpha^{2}}{2q^{2}} \times (1 + \cos^{2}\theta) \Big[F_{\text{UU}}^{1} + S_{\text{aL}} S_{\text{bL}} F_{\text{LL}}^{1} \\ + \Big| \vec{S}_{\text{aT}} \Big| \Big| \vec{S}_{\text{bT}} \Big| \Big(\cos(\phi_{S_{\text{b}}} - \phi_{S_{\text{a}}}) F_{\text{TT}}^{\cos(\phi_{S_{\text{b}}} - \phi_{S_{\text{a}}})} + D\cos(\phi_{S_{\text{a}}} + \phi_{S_{\text{b}}}) F_{\text{TT}}^{\cos(\phi_{S_{\text{a}}} + \phi_{S_{\text{b}}})} \Big) \Big]$$

Drell-Yan studies with SPD.

DY background studies


DY and min bias events were generated with PYTHIA 6

- 2 proton beams with E=12 GeV
- Only process $q \bar{q} \rightarrow \gamma^* \rightarrow \mu^+ \mu^-$
- $m_{\mu\mu}$ >1 GeV

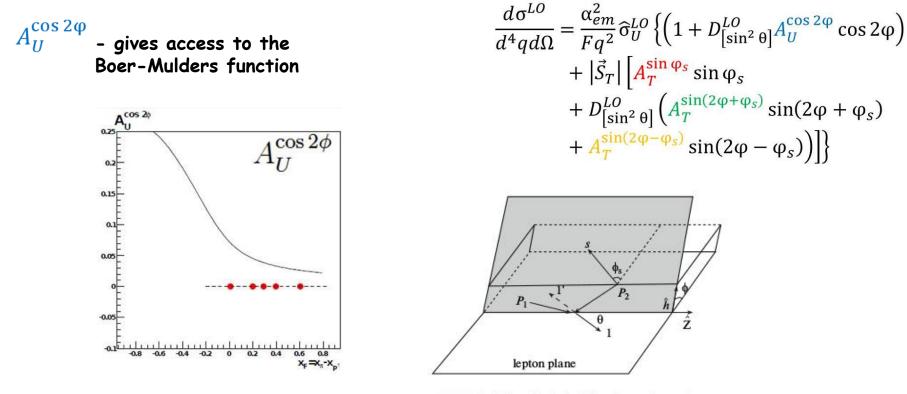

HEP.

ЛФВЭ

- Decays of π^{\pm} , K^{\pm} , K^{0}_{L} turned on
- 10⁵ events
- $\sigma_{tot} = 8.7 \, nb$ (ratio $\sigma_{tot}(MB) / \sigma_{tot}(DY) \approx 4.5 \cdot 10^6$)
- Only muons produced in volume with L=8 m and D=7 m were taken into account.
- (For $m_{\mu\mu}$ >3 GeV σ_{tot} =0.23 nb)

- PYTHIA 6
- MSEL=2
- 2 proton beams with E=12 GeV
- Decays of $\,\pi^{\pm}$, K^{\pm} , K^{0}_{L} turned on
- 75.10⁶ events
- $\sigma_{tot} = 39.4 \, mb$

Tracking system has to be done with very high efficiency to reduce DY background. ~1:60 signal/background



Drell-Yan studies with SPD.

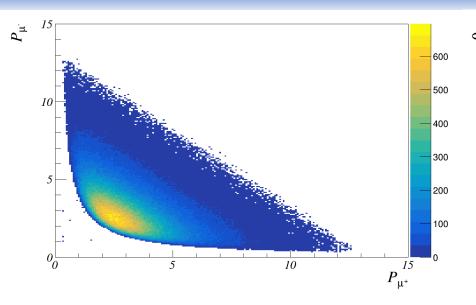
At LO the general expression of the DY cross-section simplifies to (S. Arnold, et al, Phys.Rev. D79 (2009) 034004) :

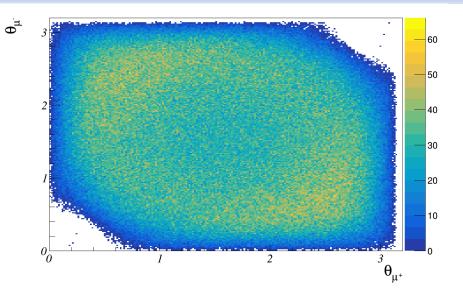
Definition of angles in Collins-Soper reference frame.

For MC studies we can take Boer-Mulders asymmetry as reference function via weights, and extract this asymmetry from simulated MC data after simplified SPD set-up with two magnet systems. The toroidal system must be checked most thoroughly since it is a new one.

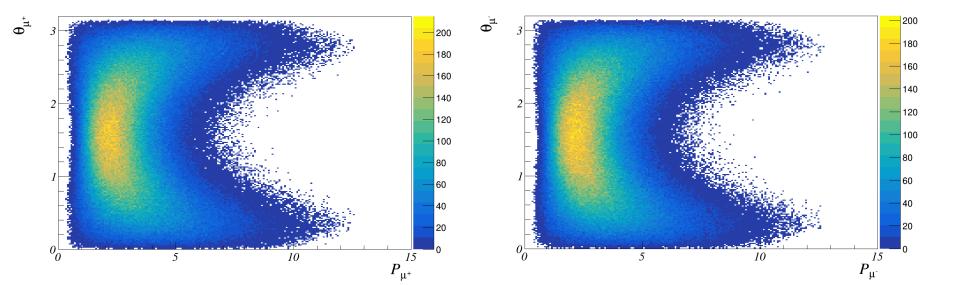
Future DY experiments

The SPD experiments will have a number of advantages for DY measurements related to nucleon structure studies. These advantages include:

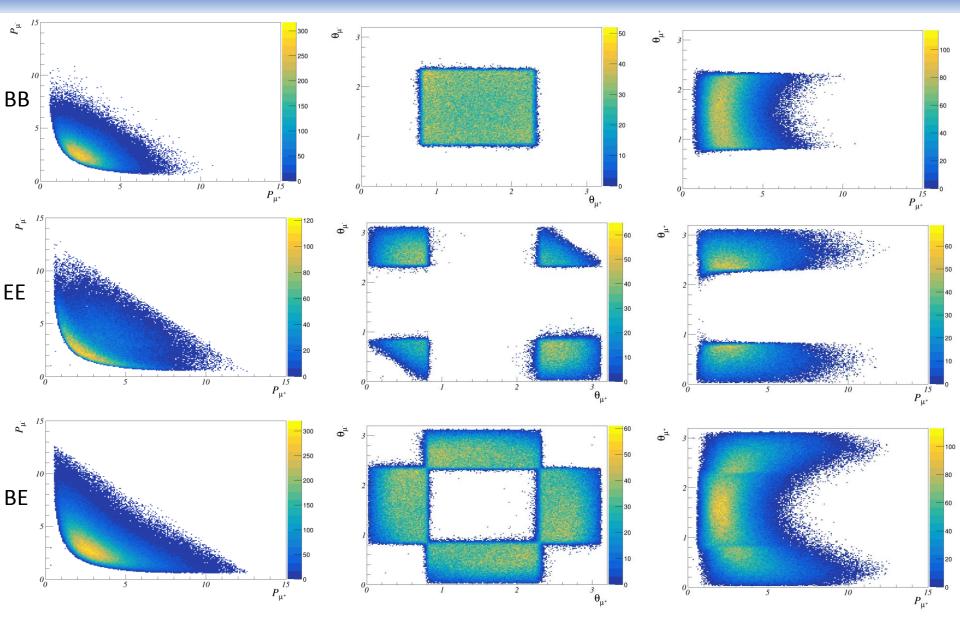

- operations with pp, pd and dd beams,
- scan of effects on beam energies,
- measurement of effects via muon and electron-positron pairs simultaneously,


- operations with non-polarized, transverse and longitudinally polarized beams or their combinations.

Such possibilities permit for the first time to perform comprehensive studies of all leading twist PDFs of nucleons in a single experiment with minimum systematic errors.


Experiment	CERN,	FAIR,	FNAL,	RHIC,	RHIC-	NICA,
F	COMPASS-II	PANDA	E-906	STAR	PHENIX	SPD
mode	fixed target	fixed target	fixed target	collider	collider	collider
Beam/target	π-, p	anti-p,p	π-, p	рр	рр	pp, pD,DD
Polarization: beam, target	0; ~ 0.8	0; 0	0; 0;	0.5;0.5	0.5;0.5	0.5;0.5
Luminosity, cm ⁻² s ⁻¹	10 ³²	10 ³²	1042	10 ³²	10 ³²	10 ³²
\sqrt{s} , GeV	17	6	16	200	200	10-26
X1(beam) X2(targ) ranges	0.1-1.0 ; 0.5-0.9	0.1-1.0 ; 0.3-0.8	0.1-1.0 ; 0.3-0.8	0.1-0.9 ; 0.1-0.9	0.1-0.9 ; 0.1-0.9	0.1-0.8 ; 0.1-0.8
q _T , GeV	0.5 -4.0	0.5 -1.5	0.5 -3.0	1.0 -10.0	1.0 -10.0	0.5 -6.0
Lepton pairs,	μ-μ+	μ-μ+	μ-μ+	μ-μ+	μ-μ+	μ-μ+, e+e-
Data taking	2014	>2018	2013	>2016	>2016	>2017
Transversity PDF	YES	NO	NO	YES	YES	YES
Boer-Mulders PDF	YES, valence, $h_{l(\pi)}^{\perp} \otimes h_{l(p)}^{\perp}$	YES	YES	YES	YES	YES
Sivers PDF	YES, π PDF	YES	YES	YES	YES	YES
Pretzelosity PDF	YES	NO	NO	NO	YES	YES
Worm Gear PDFs	YES	NO	NO	NO	NO	YES
Duality, J/Ψ	YES	YES	NO	NO	NO	YES
Flavour decomposition	NO	NO	YES	NO	NO	YES
Lam-Tung relation	NO	NO	NO	NO	NO	YES

DY


RS

05.04.2019

Asymmetry in SPD

DY

