Direct extraction of transversity and its accompanying T-odd distribution from the unpolarized and single-polarized Drell-Yan processes

A.N. Sissakian* O.Yu. Shevchenko A.P. Nagaytsev and O.N. Ivanor
Joint Institute for Nuclear Research, 141980 Dubna, Russia

Abstract

The Drell-Yan (DY) processes with unpolarized colliding hadrons and with the single transversally polarized hadron are considered. The possibility of direct (without any model assumptions) extraction of both transversity and its accompanying T-odd parton distribution functions (PDF) is discussed. For DY processes measurements planned at GSI the preliminary estimations demonstrate that it is quite real to extract both transversity and its accompanying T-odd PDF in the PAX conditions.

PACS numbers: $13.65 . \mathrm{Ni}, 13.60 . \mathrm{Hb}, 13.88 .+\mathrm{e}$

The advantage of DY process for extraction of PDF, is that there is no need of any fragmentation functions. While the double transversely polarized DY process $H_{1}^{\dagger} H_{2}^{\dagger} \rightarrow l^{+} l^{-} X$ allows to directly extract the transversity distributions (see ref. [1] for review), in the single polarized DY $H_{1} H_{2}^{\dagger} \rightarrow l^{+} l^{-} X$ the access to transversity is rather difficult since it enters the respective cross-section in the complex convolution with another unknown T-odd PDF (see below). At the same time it is, certainly very desirable to manage to get the transversity PDF from unpolarized and single-polarized DY processes as an alternative possibility. Besides, T-odd PDF are very intriguing and interesting objects in themselves, so that it is very important to extract them too.
The main goal of this paper is to investigate the possibility to completely disentangle PDFs corresponding to the unpolarized and single-polarized DY processes.
Let us first consider the results of ref. [2] for both unpolarized and single-polarized DY processes. In that paper the Collins-Soper frame ${ }^{1}$ is used (see Fig. 3 in ref. [2]), where one deals with three angles θ, ϕ and $\phi_{S_{2}}$. Two angles, θ and ϕ, are common for both unpolarized and polarized DY processes. These are the polar and azimuthal angles of lepton pair. Third angle, $\phi_{S_{2}}$, does appear when hadron two is transversally polarized, and this is just the azimuthal angle of $\mathbf{S}_{2 T}$ measured with respect to lepton plane.
We consider here the case of pure transverse polarization of hadron two, so that we put $\lambda_{1}=0$ and $\left|\mathbf{S}_{1 T}\right|=1\left(\lambda_{2}=0\right.$ and $\left|\mathbf{S}_{2 T}\right|=1$ in our notation) in the respective equations of ref. [2] (Eqs. (21) and (22) in ref. [2]) for unpolarized and single polarized crosssections. Besides, taking into account only the dominating electromagnetic contributions and neglecting (just as in ref. 2]) the "higher harmonic" term containing 3ϕ dependence, one gets the following simpli-

[^0]fied equations for the QPM unpolarized and singlepolarized cross-sections :
\[

\left.\left.$$
\begin{array}{l}
\frac{d \sigma^{(0)}\left(H_{1} H_{2} \rightarrow l \bar{l} X\right)}{d \Omega d x_{1} d x_{2} d^{2} \mathbf{q}_{T}}=\frac{\alpha^{2}}{12 Q^{2}} \sum_{q} e_{q}^{2} \\
\times\left\{\left(1+\cos ^{2} \theta\right) \mathcal{F}\left[\bar{f}_{1 q} f_{1 q}\right]+\sin ^{2} \theta \cos (2 \phi)\right. \\
\times \mathcal{F}\left[\left(2 \hat{\mathbf{h}} \cdot \mathbf{k}_{1 T} \hat{\mathbf{h}} \cdot \mathbf{k}_{2 T}\right.\right. \\
\left.-\mathbf{k}_{1 T} \cdot \mathbf{k}_{2 T}\right) \frac{\bar{h}}{1} \frac{\perp}{h_{1}} h_{1 q}^{\perp} \tag{1}\\
M_{1} M_{2}
\end{array}
$$\right]\right\}, \$
\]

and

$$
\begin{align*}
& \frac{d \sigma^{(1)}\left(H_{1} H_{2}^{\uparrow} \rightarrow l \bar{l} X\right)}{d \Omega d \phi_{S_{2}} d x_{1} d x_{2} d^{2} \mathbf{q}_{T}}=\frac{\alpha^{2}}{12 Q^{2}} \sum_{q} e_{q}^{2} \\
& \times\left\{\left(1+\cos ^{2} \theta\right) \mathcal{F}\left[\bar{f}_{1 q} f_{1 q}\right]+\sin ^{2} \theta \cos (2 \phi)\right. \\
& \times \mathcal{F}\left[\left(2 \hat{\mathbf{h}} \cdot \mathbf{k}_{1 T} \hat{\mathbf{h}} \cdot \mathbf{k}_{2 T}-\mathbf{k}_{1 T} \cdot \mathbf{k}_{2 T}\right) \frac{\bar{h}_{1 q}^{\perp} h_{1 q}^{\perp}}{M_{1} M_{2}}\right] \\
& +\left(1+\cos ^{2} \theta\right) \sin \left(\phi-\phi_{S_{2}}\right) \mathcal{F}\left[\hat{\mathbf{h}} \cdot \mathbf{k}_{2 T} \frac{\bar{f}_{1}^{q} f_{1 T}^{\perp q}}{M_{2}}\right] \\
& \left.-\sin ^{2} \theta \sin \left(\phi+\phi_{S_{2}}\right) \mathcal{F}\left[\hat{\mathbf{h}} \cdot \mathbf{k}_{1 T} \frac{\bar{h}_{1 q}^{\perp} h_{1 q}}{M_{1}}\right]\right\} . \tag{2}
\end{align*}
$$

Here $\hat{\mathbf{h}} \equiv \mathbf{q}_{T} /\left|\mathbf{q}_{T}\right|, \quad h_{1 q}\left(x, \mathbf{k}_{T}^{2}\right)$ is the k_{T-} dependent transversity distribution, while $h_{1 q}^{\perp}\left(x, \mathbf{k}_{T}^{2}\right)$ and $f_{1}^{\perp q}\left(x, \mathbf{k}_{T}^{2}\right)$ are k_{T}-dependent T-odd PDFs (see ref. 1] for review). The convolution product is defined [2] as

$$
\begin{align*}
& \mathcal{F}\left[\bar{f}_{q} f_{q}\right] \equiv \int d^{2} \mathbf{k}_{1 T} d^{2} \mathbf{k}_{2 T} \delta^{2}\left(\mathbf{k}_{1 T}+\mathbf{k}_{2 T}-\mathbf{q}_{T}\right) \\
& \times\left[f_{q}\left(x_{1}, \mathbf{k}_{1 T}^{2}\right) \bar{f}_{q}\left(x_{2}, \mathbf{k}_{2 T}^{2}\right)+(1 \leftrightarrow 2)\right] . \tag{3}
\end{align*}
$$

Let us first consider the purely unpolarized DY process. Notice that Eq. (11) is very inconvenient in application because of the complicated q_{T} and k_{T} dependence entering Eq. (11) via the convolution, Eq. (3).

To deal with Eq. (1) the model

$$
\begin{equation*}
h_{1 q}^{\perp}\left(x, \mathbf{k}_{T}^{2}\right)=\frac{\alpha_{T}}{\pi} c_{H}^{q} \frac{M_{C} M_{H}}{\mathbf{k}_{T}^{2}+M_{C}^{2}} \mathrm{e}^{-\alpha_{T} \mathbf{k}_{T}^{2}} f_{1 q}(x) \tag{4}
\end{equation*}
$$

where $M_{C}=2.3 \mathrm{GeV}, c_{H}^{q}=1, \alpha_{T}=1 \mathrm{GeV}^{-2}$ and M_{H} is the hadron mass, was proposed in ref. (2]. With a such assumption one then calculates [2, 3] the coefficient $\kappa \equiv \nu / 2$ at $\cos 2 \phi$ dependent part of the ratio

$$
\begin{equation*}
R \equiv \frac{d \sigma^{(0)} / d \Omega}{\sigma^{(0)}} \tag{5}
\end{equation*}
$$

which allows to explain ${ }^{2}$ the anomalous $\cos 2 \phi$ dependence [4, 5] of the unpolarized DY cross-section. However, the author of ref. [2] stresses that Eq. (4) is just a "crude model". Besides, Eq. (4) can not help us to extract the quantity h_{1}^{\perp} from the unpolarized DY process.

Thus, to avoid these problems, let us apply the \mathbf{q}_{T} weighting approach which was first proposed and applied in refs. [6] and 7] with respect to a particular electron-positron annihilation process and in ref. [8] with respect to semi-inclusive DIS. To use the advantage of \mathbf{q}_{T} integration, one should extract from unpolarized DY process the properly integrated over \mathbf{q}_{T} ratio (c.f. Eq. (5))

$$
\begin{equation*}
\hat{R}=\frac{\int d^{2} \mathbf{q}_{T}\left[\left|\mathbf{q}_{T}\right|^{2} / M_{1} M_{2}\right]\left[d \sigma^{(0)} / d \Omega\right]}{\int d^{2} \mathbf{q}_{T} \sigma^{(0)}} \tag{6}
\end{equation*}
$$

parametrized as

$$
\begin{equation*}
\hat{R}=\frac{3}{16 \pi}\left(\gamma\left(1+\cos ^{2} \theta\right)+\hat{k} \cos 2 \phi \sin ^{2} \theta\right) \tag{7}
\end{equation*}
$$

that should be compared ${ }^{3}$ with the equation (see refs [2, 4])

$$
\begin{align*}
& R=\frac{3}{16 \pi}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi\right. \\
& \left.+(\nu / 2) \cos 2 \phi \sin ^{2} \theta\right) \quad(\nu \equiv 2 \kappa, \lambda \simeq 1, \mu \simeq 0) . \tag{8}
\end{align*}
$$

By virtue of Eq. (11), the coefficient \hat{k} at $\cos 2 \phi$ dependent part of \hat{R} reads

$$
\begin{align*}
& \hat{k}=\int d^{2} \mathbf{q}_{T}\left[\left|\mathbf{q}_{\mathbf{T}}\right|^{2} / M_{1} M_{2}\right] \\
& \times \sum_{q} e_{q}^{2} \mathcal{F}\left[\left(2 \hat{\mathbf{h}} \cdot \mathbf{k}_{1 T} \hat{\mathbf{h}} \cdot \mathbf{k}_{2 T}-\mathbf{k}_{1 T} \cdot \mathbf{k}_{2 T}\right) \frac{\bar{h}_{1}^{\perp} h_{1}^{\perp}}{M_{1} M_{2}}\right] \\
& \times\left(\int d^{2} \mathbf{q}_{T} \sum_{q} e_{q}^{2} \mathcal{F}\left[\bar{f}_{1} f_{1}\right]\right)^{-1} \tag{9}
\end{align*}
$$

[^1]and, due to the properly chosen weight $\left|\mathbf{q}_{T}\right|^{2}$, the integration over \mathbf{q}_{T} leads ${ }^{4}$ to the following simple equation for \hat{k} :
\[

$$
\begin{equation*}
\hat{k}=8 \frac{\sum_{q} e_{q}^{2}\left(\bar{h}_{1 q}^{\perp(1)}\left(x_{1}\right) h_{1 q}^{\perp(1)}\left(x_{2}\right)+(1 \leftrightarrow 2)\right)}{\sum_{q} e_{q}^{2}\left(\bar{f}_{1 q}\left(x_{1}\right) f_{1 q}\left(x_{2}\right)+(1 \leftrightarrow 2)\right)} \tag{10}
\end{equation*}
$$

\]

where the standard notation [6, 7, 8]

$$
\begin{equation*}
h_{1 q}^{\perp(n)}(x) \equiv \int d^{2} \mathbf{k}_{T}\left(\frac{\mathbf{k}_{T}^{2}}{2 M^{2}}\right)^{n} h_{1 q}^{\perp}\left(x, \mathbf{k}_{T}^{2}\right) \tag{11}
\end{equation*}
$$

for the n-th moment of \mathbf{k}_{T}-dependent PDF is used. Thus, one can see that the numerator of \hat{k} is factorized out in the simple product of the first moments of h_{1}^{\perp} distributions. This allows to directly extract these quantities from \hat{k} which should be measured in unpolarized DY. This, in turn (see below), allows to directly extract the transversity distributions h_{1} from the single spin polarized DY. Notice that now there is no need in any model assumptions about k_{T} dependence of h_{1}^{\perp} distributions.

Let us now consider the single transversely polarized DY process $H_{1} H_{2}^{\uparrow} \rightarrow l^{+} l^{-} X$ and define the following single-spin asymmetries (SSA)

$$
\begin{align*}
& A_{h(f)}= \\
& \int d \Omega d \phi_{S_{2}} \sin \left(\phi \pm \phi_{S_{2}}\right)\left[d \sigma\left(\mathbf{S}_{2 T}\right)-d \sigma\left(-\mathbf{S}_{2 T}\right)\right] \\
& \times\left(\int d \Omega d \phi_{S_{2}}\left[d \sigma\left(\mathbf{S}_{2 T}\right)+d \sigma\left(-\mathbf{S}_{2 T}\right)\right]\right)^{-1}, \tag{12}
\end{align*}
$$

where the single-polarized cross-section is given by Eq. (2). It is clear that in the difference $d \sigma\left(\mathbf{S}_{2 T}\right)$ $d \sigma\left(-\mathbf{S}_{2 T}\right)$ only the terms of Eq. (12) containing $\sin \left(\phi-\phi_{S_{2}}\right)$ and $\sin \left(\phi+\phi_{S_{2}}\right)$ survive (and are multiplied by two). Besides, the properly chosen ${ }^{5}$ weights: $\sin \left(\phi+\phi_{S_{2}}\right)$ and $\sin \left(\phi-\phi_{S_{2}}\right)$, allow to separate the contributions containing h_{1}^{\perp} and $f_{1 T}^{\perp}$ PDF with the result

$$
\begin{equation*}
A_{h}=-\frac{1}{4} \frac{\sum_{q} e_{q}^{2} \mathcal{F}\left[\frac{\hat{\mathbf{h}} \cdot \mathbf{k}_{1 T}}{M_{1}} \bar{h}_{1 q}^{\perp} h_{1 q}\right]}{\sum_{q} e_{q}^{2} \mathcal{F}\left[\bar{f}_{1 q} f_{1 q}\right]} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{f}=\frac{1}{2} \frac{\sum_{q} e_{q}^{2} \mathcal{F}\left[\frac{\hat{\mathbf{h}} \cdot \mathbf{k}_{2 T}}{M_{2}} \bar{f}_{1}^{q} f_{1 T}^{\perp q}\right]}{\sum_{q} e_{q}^{2} \mathcal{F}\left[\bar{f}_{1 q} f_{1 q}\right]} . \tag{14}
\end{equation*}
$$

The asymmetries like A_{f} given by Eqs. (12), (14) and their application with respect to Sivers function $f_{1 T}^{\perp}\left(x, \mathbf{k}_{T}^{2}\right) \equiv-\left(M / 2\left|\mathbf{k}_{T}\right|\right) \Delta_{q / H^{\uparrow}}^{N}\left(x, \mathbf{k}_{T}^{2}\right)$ extraction from the data were considered in detail in refs.

[^2]10, 11, so that we concentrate here on the asymmetry A_{h} given by Eqs. (12) and (13).

Notice that asymmetry A_{h} given by Eqs. (12), (13) is inconvenient in application because of the complicated q_{T} and k_{T} dependence entering the convolution.

So, we again apply the q_{T} integration method [6, 7, 8] (see also its application for the SIDIS processes in ref. [9] and for the Sivers PDF extraction from the single polarized DY in ref. 10]):

$$
\begin{equation*}
\hat{A}_{h}=\frac{\int d \Omega d \phi_{S_{2}} \int d^{2} \mathbf{q}_{T}\left(\left|\mathbf{q}_{T}\right| / M_{1}\right) \sin \left(\phi+\phi_{S_{2}}\right)\left[d \sigma\left(\mathbf{S}_{2 T}\right)-d \sigma\left(-\mathbf{S}_{2 T}\right)\right]}{\int d \Omega d \phi_{S_{2}} \int d^{2} \mathbf{q}_{T}\left[d \sigma\left(\mathbf{S}_{2 T}\right)+d \sigma\left(-\mathbf{S}_{2 T}\right)\right]} \tag{15}
\end{equation*}
$$

so that one easily gets

$$
\begin{equation*}
\hat{A}_{h}=-\frac{1}{2} \frac{\sum_{q} e_{q}^{2}\left[\bar{h}_{1 q}^{\perp(1)}\left(x_{1}\right) h_{1 q}\left(x_{2}\right)+(1 \leftrightarrow 2)\right]}{\sum_{q} e_{q}^{2}\left[\bar{f}_{1 q}\left(x_{1}\right) f_{1 q}\left(x_{2}\right)+(1 \leftrightarrow 2)\right]} \tag{16}
\end{equation*}
$$

Thus, one can see that \hat{A}_{h} is also factorized in the simple product of $\bar{h}_{1}^{\perp(1)}$ and h_{1}.

Among variety of DY processes, DY processes with
antiproton $\left(\bar{p} p \rightarrow l^{+} l^{-} X, \bar{p} p^{\uparrow} \rightarrow l^{+} l^{-} X, \bar{p}^{\uparrow} p^{\uparrow} \rightarrow\right.$ $\left.l^{+} l^{-} X\right)$ have essential advantage because the charge conjugation symmetry can be applied. Indeed, due to charge conjugation, antiquark PDF from the antiproton are equal to the respective quark PDF from the proton. Thus, Eqs. (10), (16) in the case of $\bar{p} p$ collisions are rewritten as

$$
\begin{equation*}
\left.\hat{k}\right|_{\bar{p} p^{\uparrow} \rightarrow l^{+} l^{-} X}=8 \frac{\sum_{q} e_{q}^{2}\left[h_{1 q}^{\perp(1)}\left(x_{1}\right) h_{1 q}^{\perp(1)}\left(x_{2}\right)+\bar{h}_{1 q}^{\perp(1)}\left(x_{1}\right) \bar{h}_{1 q}^{\perp(1)}\left(x_{2}\right)\right]}{\sum_{q} e_{q}^{2}\left[f_{1 q}\left(x_{1}\right) f_{1 q}\left(x_{2}\right)+\bar{f}_{1 q}\left(x_{1}\right) \bar{f}_{1 q}\left(x_{2}\right)\right]}, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\hat{A}_{h}\right|_{\bar{p} p^{\uparrow \rightarrow l^{+} l^{-} X}}=-\frac{1}{2} \frac{\sum_{q} e_{q}^{2}\left[h_{1 q}^{\perp(1)}\left(x_{1}\right) h_{1 q}\left(x_{2}\right)+\bar{h}_{1 q}\left(x_{1}\right) \bar{h}_{1 q}^{\perp(1)}\left(x_{2}\right)\right]}{\sum_{q} e_{q}^{2}\left[f_{1 q}\left(x_{1}\right) f_{1 q}\left(x_{2}\right)+\bar{f}_{1 q}\left(x_{1}\right) \bar{f}_{1 q}\left(x_{2}\right)\right]} \tag{18}
\end{equation*}
$$

where now all PDF refer to protons. Neglecting squared antiquark and strange quark PDF contributions to proton and taking into account the quark charges and u quark dominance at large ${ }^{6} x$, Eqs. (17) and (18) are essentially given by

$$
\begin{equation*}
\left.\hat{k}\left(x_{1}, x_{2}\right)\right|_{\bar{p} p^{\uparrow} \rightarrow l^{+} l^{-} X} \simeq 8 \frac{h_{1 u}^{\perp(1)}\left(x_{1}\right) h_{1 u}^{\perp(1)}\left(x_{2}\right)}{f_{1 u}\left(x_{1}\right) f_{1 u}\left(x_{2}\right)} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\hat{A}_{h}\left(x_{1}, x_{2}\right)\right|_{\bar{p} p^{\uparrow} \rightarrow l^{+} l^{-} X} \simeq-\frac{1}{2} \frac{h_{1 u}^{\perp(1)}\left(x_{1}\right) h_{1 u}\left(x_{2}\right)}{f_{1 u}\left(x_{1}\right) f_{1 u}\left(x_{2}\right)} \tag{20}
\end{equation*}
$$

One can see that the system of Eqs. (19) and (20) has very simple and convenient form in application. Measuring the quantity \hat{k} in unpolarized DY (Eqs. (6),
(7)) and using Eq. (19) one can obtain the quantity $h_{1 u}^{\perp(1)}$. Then, measuring SSA, Eq. (15), and using the obtained quantity $h_{1 u}^{\perp(1)}$, one can eventually extract the transversity distribution $h_{1 u}$ using Eq. (20). Let us stress once again that now there is no need in any model assumptions about k_{T} dependence of h_{1}^{\perp} distributions.

In order to obtain squares of $h_{1 u}^{\perp(1)}$ and $f_{1 u}$ in Eqs. (19) and (20), one should consider them at the points ${ }^{7}$ $x_{1}=x_{2} \equiv x$ (i.e., $x_{F} \equiv x_{1}-x_{2}=0$), so that

$$
\begin{equation*}
h_{1 u}^{\perp(1)}(x)=f_{1 u}(x) \sqrt{\frac{\hat{k}(x, x)}{8}} \tag{21}
\end{equation*}
$$

[^3]and
\[

$$
\begin{equation*}
h_{1 u}(x)=-4 \sqrt{2} \frac{\hat{A}_{h}(x, x)}{\sqrt{\hat{k}(x, x)}} f_{1 u}(x) \tag{22}
\end{equation*}
$$

\]

To estimate the possibility of $h_{1 u}^{\perp(1)}$ and $h_{1 u}$ measurement, the special simulation of DY events with the PAX kinematics [12] are performed. The protonantiproton collisions are simulated with PYTHIA event generator 13]. Two samples are prepared: for the collider mode (15 GeV antiproton beam colliding on the 3.5 GeV proton beam) and for fixed target mode (22 GeV antiproton beam colliding on an internal hydrogen target). Each sample contains about 100 K pure Drell-Yan events. Notice, that this is just the statistics planned to be achieved by PAX. Indeed (see ref. [12]), the sample for collider mode corresponds to about one year of data-taking with a crosssection of 40 mb and a luminosity of $2 \times 10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. For fixed target mode it can takes about three months with a cross-section of 30 mb and a luminosity of about $10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.
Unfortunately, the original PYTHIA generator we deal with does not reproduce the corresponding to DY experiments [4, 5] nontrivial q_{T} and x dependencies of the quantity ν entering Eq. (8). So, to estimate the possibility of $h_{1 u}^{\perp(1)}$ and $h_{1 u}$ measurement, one should properly introduce these dependencies in accordance with the existing experimental data. To this end we apply the commonly used Monte-Carlo method based on weighting of the kinematical events. To apply the weighting procedure in our case, we just ascribe to each event the weight $w=R$ which, in accordance with the data [4, [5], is given by Eq. (8), where $\lambda \simeq 1$, $\mu \simeq 0$ and ν has nontrivial q_{T} and x dependencies. The q_{T} dependence of ν is taken from refs. [2, 3] Eq. (49) in ref. 2] and Eq. (21) in ref. 3], and this q_{T} dependence properly fits the existing experimental data 4, 5]. However, in refs. [2, 3] (where the simplified Boer's model is applied) there is no (important and corresponding to DY experiments [4, 5]) x-dependence of ν at all, so that we take this dependence from ref. [4].

To check the validity of the angular distribution analysis of the weighted events we reconstruct the q_{T} and x_{1} dependencies of ν. The results are shown in Figs. 1, 2. One can see a good agreement ${ }^{8}$ between input (solid lines) and reconstructed (points with error bars) values.

Thus, applying the above described weighting procedure, our simulations reproduce the nontrivial angular dependence of R with $q_{T^{-}}$and x-dependent ν. These dependencies are in accordance with the respective input dependencies obtained in experiments on

[^4]

FIG. 1: Reconstructed from simulations (fixed target mode) quantities μ and ν versus q_{T} in comparison with the input (corresponding to experimental data) dependencies (solid lines).

FIG. 2: Reconstructed from simulations (fixed target mode) quantities μ and ν versus x_{1} in comparison with the input (corresponding to experimental data) dependencies (solid lines).

DY [4, 5]. Now it is straightforward to reconstruct the q_{T}-weighted quantity \hat{R} (Eq. (6) and, consequently, \hat{k} (Eq. 7). The results are shown in Fig. 3 The values of \hat{k} at averaged Q^{2} for both modes are found to be 1.2 ± 0.2 for collider mode and 1.0 ± 0.2 for fixed target mode.

The quantity $h_{1 u}^{\perp(1)}$ is reconstructed from the obtained values of \hat{k} using Eq. (21) with $x_{F}=0 \pm 0.04$. The results are shown in Fig. 4 The obtained magnitudes of $h_{1 u}^{\perp(1)}$ are in accordance (in order of value) with the respective magnitudes obtained with the model (4) for $h_{1 u}^{\perp}\left(x, \mathbf{k}_{T}\right)$. Indeed, for example for the collider mode ($Q_{\text {average }}^{2} \simeq 9 \mathrm{GeV}^{2}$, so that $x_{1} \simeq x_{2} \simeq 0.2$ at the point $x_{F} \simeq 0$) the results from the simulations and from the model (4) are $h_{1 u}^{\perp(1)} \simeq 1$ and $h_{1 u}^{\perp(1)} \simeq 0.5$, respectively.

Using the obtained magnitudes of $h_{1 u}^{\perp(1)}$ we estimate the expected SSA given by Eq. (20). The results are shown in Figs. 5 and 6. For estimation of $h_{1 u}$ entering SSA together with $h_{1 u}^{\perp(1)}$ (see Eq. (20)) we follow the

FIG. 3: \hat{k} versus x_{1} at $x_{F} \simeq 0$. Data is obtained with MC simulations for collider (closed circles) and for fixed target mode (open circles). For better visibility (to avoid overlapping) the points for collider (fixed target) mode are shifted 0.01 to the left (right) along the x-axis.

FIG. 4: $h_{1 u}^{\perp(1)}$ versus x_{1} at $x_{F} \simeq 0$. Data is obtained with MC simulations for collider (closed circles) and for fixed target mode (open circles). For better visibility (to avoid overlapping) the points for collider (fixed target) mode are shifted 0.01 to the left (right) along the x-axis.
procedure of ref. 14 and use (rather crude) "evolution model" [2, 14], where there is no any estimations of uncertainties. That is why in (purely qualitative) figures 5 and 6 we present the solid curves instead of points with error bars. To obtain these curves we reproduce x-dependence of $h_{1 u}^{\perp(1)}$ in the considered region, using the Boer's model, Eq. (4), properly numerically corrected in accordance with the simulation results.
To estimate the measurability of the quantities we deal with, it is relevant to estimate the upper bounds on $h_{1}, h_{1}^{\perp(1)}$ and then on \hat{k} and \hat{A}_{h}. Obtaining $h_{1 u}^{\perp(1)}$ and $h_{1 u}$ one deals with Eqs. (19), (20) applied at the points $x_{1} \simeq x_{2} \simeq \sqrt{Q^{2} / s}$, so that we perform the estimation of the upper bounds on \hat{k} and \hat{A}_{h} at the points $x_{F} \simeq 0$ corresponding to the average Q^{2} values for both collider and fixed target
modes. The maximally allowed value of $h_{1}^{\perp(1)}$ can be found operating just as it was done with respect to the quantity $f_{1 T}^{\perp(1) q}$ (first moment of the Sivers function) in ref. 10]. To this end we first apply the inequality ${ }^{9}$ [15] $\left(\left|\mathbf{k}_{T}\right| / M\right) h_{1}^{\perp}\left(x, \mathbf{k}_{T}^{2}\right) \leq f_{1}\left(x, \mathbf{k}_{T}^{2}\right)$. Then, using the estimation (see ref. 10] and references therein) $\left\langle k_{T}\right\rangle \simeq 0.8 \mathrm{GeV}$ one easily gets the upper bound on $h_{1 u}^{\perp(1)}: h_{1 u}^{\perp(1)} \lesssim 0.4 f_{1 u}(x)$. On the other hand, maximally allowed value of $h_{1 u}$ can be found using the Soffer [16] inequality $\left|h_{1 u}\right| \leq\left(f_{1 u}+g_{1 u}\right) / 2$. For the PAX kinematics $s=43 \mathrm{GeV}^{2}, Q_{\text {average }}^{2} \simeq$ $5 \mathrm{GeV}^{2}$ for the fixed target mode and $s=215 \mathrm{GeV}^{2}$, $Q_{\text {average }}^{2} \simeq 9 \mathrm{GeV}^{2}$ for the collider mode. Thus, at the point $x_{F}=0$ we deal with, $x_{1} \simeq x_{2} \simeq 0.3$ and $x_{1} \simeq x_{2} \simeq 0.2$ for the fixed target and collider modes, respectively. Then, the inequalities on $h_{1 u}$ and $h_{1 u}^{\perp(1)}$ give $^{10} h_{1 u(\max)} \simeq 1.5\left(f_{1 u}=1.9, g_{1 u}=1.0\right)$ and $h_{1 u(\text { max })}^{\perp(1)} \simeq 0.8$ for fixed target mode while $h_{1 u(\text { max })} \simeq$ $2.3\left(f_{1 u}=3.1, g_{1 u}=1.5\right)$ and $h_{1 u(\max)}^{\perp(1)} \simeq 1.2$ for collider mode. Using these estimations of $h_{1 u(\max)}$ and $h_{1 u(\text { max })}^{\perp(1)}$ in Eqs. (19), (20) it is straightforward to obtain the maximally allowed values of \hat{k} and \hat{A}_{h} : $\hat{k}_{(\max)} \simeq 1.4$ and $\left|\hat{A}_{h(\max)}\right| \simeq 0.17$ for fixed target mode while $\hat{k}_{(\max)} \simeq 1.2$ and $\left|\hat{A}_{h(\max)}\right| \simeq 0.14$ for collider mode. One can see that obtained estimations of upper bounds on $h_{1 u}^{\perp(1)}, \hat{k}$ and \hat{A}_{h} are in accordance with the results presented by Figs. 3-6.

Looking at the (preliminary) estimations presented by Figs. 3 and 4, one can conclude that the quantities \hat{k} and $h_{1 u}^{\perp(1)}$ are presumably measurable in most of the considered x-region. At the same time, looking at Figs. 5 and 6 one can see that for both modes SSA \hat{A}_{h} is estimated to be about $6-8 \%$. On the other hand, as it was argued in Ref. 12] (see section "Single Spin asymmetries and Sivers Function", p. 25), the studied in ref. 10] SSA $A_{U T}^{\sin \left(\phi-\phi_{S}\right) \frac{q_{T}}{M_{N}}}$ of order $5-10 \%$ can be measured by PAX. It is obvious that studied in this paper SSA \hat{A}_{h}, weighted with $\sin \left(\phi+\phi_{S}\right)$ and the same weight q_{T} / M_{N}, is absolutely analogous to SSA $A_{U T}^{\sin \left(\phi-\phi_{S}\right) \frac{q_{T}}{M_{N}}}$, so that it is clear that if $A_{U T}^{\sin \left(\phi-\phi_{S}\right) \frac{q_{T}}{M_{N}}}$ of $5-10 \%$ is measurable, then \hat{A}_{h} of $6-8 \%$ is measurable too.

Thus, it is shown that it is possible to directly extract the transversity and its accompanying T-odd PDF from the unpolarized and single polarized DY processes with antiproton participation. It is of importance that there is no need in any model assump-

[^5]

FIG. 5: SSA given by Eq. (20) versus x_{F} for collider mode for three values of $Q^{2}: 50 \mathrm{GeV}^{2}$ (lower curve), $25 \mathrm{GeV}^{2}$ (middle curve) and $9 \mathrm{GeV}^{2}$ (upper curve).

FIG. 6: SSA given by Eq. (20) versus x_{F} for fixed target mode for three values of $Q^{2}: 16 \mathrm{GeV}^{2}$ (lower curve), $9 \mathrm{GeV}^{2}$ (middle curve) and $4 \mathrm{GeV}^{2}$ (upper curve).
tions about k_{T} dependence of h_{1}^{\perp}. One can directly extract both h_{1} and first moment of h_{1}^{\perp} from the singlepolarized and unpolarized DY processes, since these quantities enter the measured \hat{k} and $\operatorname{SSA} A_{h}$ in the form of simple product instead of complex convolution. The preliminary estimations for PAX kinematics show the possibility to measure both \hat{k} and SSA \hat{A}_{h} and then to extract the quantities $h_{1}^{\perp(1)}$ and h_{1}. Certainly, the estimations of \hat{k} and \hat{A}_{h} magnitudes obtained it this paper are very preliminary and show just the order of values of these quantities. For more precise estimations one needs the Monte-Carlo generator more suitable for DY processes studies (see, for example. ref. [3]) than PYTHIA generator which we used (with the proper weighting of events) here.

Notice, that it is straightforward to properly modify the procedure discussed in this paper to DY processes: $\pi^{-} p \rightarrow \mu^{+} \mu^{-} X$ and $\pi^{-} p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$, which could be study [19] in the COMPASS experiment at CERN.

The authors are grateful to M. Anselmino, R. Bertini, O. Denisov, A. Efremov, A. Kacharava, V. Krivokhizhin, A. Kulikov, P. Lenisa, A. Maggiora, A. Olshevsky, G. Piragino, G. Pontecorvo, F. Rathmann, I. Savin, M. Tabidze, O. Teryaev and W. Vogelsang for fruitful discussions. The work of O.S. and O.I. was supported by the Russian Foundation for Basic Research (project no. 05-02-17748).
[1] V. Barone, A. Drago, and P.G. Ratcliffe, Phys. Rep. 359, 1 (2002), hep-ph/0104283
[2] D. Boer, Phys. Rev. D 60, 014012 (1999).
[3] A. Bianconi, M. Radici Phys. Rev. D 71, 074014 (2005).
[4] J.S. Conway et al, Phys. Rev. D 39, 92 (1989).
[5] S. Falciano et al., NA10 Collab., Z. Phys. C 31, 513 (1986); M. Guanziroli et al., Z. Phys. C 37, 545 (1988).
[6] D. Boer, R. Jakob, P. J. Mulders, Nucl. Phys. B 504, 345 (1997)
[7] D. Boer, R. Jakob, P. J. Mulders, Phys. Lett. B 424, 143 (1998)
[8] D. Boer, P. J. Mulders, Phys. Rev. D 57, 5780 (1998)
[9] HERMES collaboration (A. Airapetian et al), Phys. Rev. Lett. 84, 4047 (2000); Phys. Rev. D 64, 097101 (2001); Phys. Lett. B 562, 182 (2003); Phys. Rev. Lett. 94, 012002 (2005).
[10] A.V. Efremov et al, Phys. Lett. B 612, 233 (2005).
[11] M. Anselmino, U. D’Alesio, F. Murgia, Phys. Rev. D 67, 074010 (2003).
[12] V. Barone et al., PAX Collaboration, "AntiprotonProton Scattering Experiments with Polarization", Julich, April 2005, accessible electronically via http://www.fz-juelich.de/ikp/pax/public_files/tp_PAX.pdf
[13] T. Sjostrand et al., hep-ph/0308153
[14] M. Anselmino, V. Barone, A. Drago, N.N. Nikolaev, Phys. Lett. B 594, 97 (2004).
[15] A. Bacchetta, M. Boglione, A. Henneman, P.J. Mulders, Phys. Rev. Lett. 85, 712 (2000); hep-ph/9912490
[16] J. Soffer, Phys. Rev. Lett. 74, 1292 (1995)
[17] M. Gluck, E. Reya, M. Stratmann, W. Vogelsang, Phys. Rev. D 63, 094005 (2001).
[18] M. Gluck, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998).
[19] R. Bertini et al., private communication.

[^0]: *Electronic address: sisakian@jinr.ru
 ${ }^{\dagger}$ Electronic address: shev@mail.cern.ch
 ${ }^{\ddagger}$ Electronic address: nagajcev@mail.desy.de
 § Electronic address: ivon@jinr.ru
 ${ }^{1}$ See 1] for detail of the respective kinematics.

[^1]: ${ }^{2}$ Notice that the large values of ν cannot be explained by leading and next-to-leading order perturbative QCD corrections as well as by the high twists effects (see 2] and references therein).
 ${ }^{3}$ Obtaining Eg. (8) one sets [2] $\lambda=1$ and $\mu=0$ in the most general equation for R (Eq. (5) in ref. [2]), which is justified 2] by the expectation from next-to-leading order QCD and the data (refs [4, [5]) in the Collins-Soper frame.

[^2]: ${ }^{4}$ The normalization condition $\int d^{2} \mathbf{k}_{T} f_{1 q}\left(x, \mathbf{k}_{T}^{2}\right)=f_{1 q}(x)$ is used (see, for example ref. [1]).
 ${ }^{5}$ The analogous weighting procedure was applied 9] in the case of transversely polarized SIDIS by the HERMES collaboration.

[^3]: ${ }^{7}$ The different points $x_{F}=0$ can be reached changing Q^{2} value at fixed $s=x_{1} x_{2} Q^{2} \equiv \tau Q^{2}$.

[^4]: 8 As an additional check of our analysis validity, we reproduce the input zero value of μ.

[^5]: 9 This inequality is directly obtained by relaxing the bound Eq. (16) in ref. 15] (eliminating the unknown distribution in that bound).
 ${ }^{10}$ Performing these estimations we use GRSV2000LO parametrization 17] for $g_{1 u}$ and GRV98LO parametrization [18] for $f_{1 u}$.

