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Direct extraction of transversity and its accompanying T-odd distribution from

the unpolarized and single-polarized Drell-Yan processes

A.N. Sissakian,∗ O.Yu. Shevchenko,† A.P. Nagaytsev,‡ and O.N. Ivanov§

Joint Institute for Nuclear Research, 141980 Dubna, Russia

The Drell-Yan (DY) processes with unpolarized colliding hadrons and with the single transver-
sally polarized hadron are considered. The possibility of direct (without any model assumptions)
extraction of both transversity and its accompanying T-odd parton distribution functions (PDF)
is discussed. For DY processes measurements planned at GSI the preliminary estimations demon-
strate that it is quite real to extract both transversity and its accompanying T-odd PDF in the PAX
conditions.

PACS numbers: 13.65.Ni, 13.60.Hb, 13.88.+e

The advantage of DY process for extraction of PDF,
is that there is no need of any fragmentation func-
tions. While the double transversely polarized DY

process H↑
1H↑

2 → l+l−X allows to directly extract
the transversity distributions (see ref.[1] for review),

in the single polarized DY H1H
↑
2 → l+l−X the ac-

cess to transversity is rather difficult since it enters
the respective cross-section in the complex convolu-
tion with another unknown T-odd PDF (see below).
At the same time it is, certainly very desirable to man-
age to get the transversity PDF from unpolarized and
single-polarized DY processes as an alternative pos-
sibility. Besides, T-odd PDF are very intriguing and
interesting objects in themselves, so that it is very
important to extract them too.

The main goal of this paper is to investigate the pos-
sibility to completely disentangle PDFs corresponding
to the unpolarized and single-polarized DY processes.

Let us first consider the results of ref. [2] for both
unpolarized and single-polarized DY processes. In
that paper the Collins-Soper frame1 is used ( see Fig.
3 in ref. [2]), where one deals with three angles θ, φ
and φS2

. Two angles, θ and φ, are common for both
unpolarized and polarized DY processes. These are
the polar and azimuthal angles of lepton pair. Third
angle, φS2

, does appear when hadron two is transver-
sally polarized, and this is just the azimuthal angle of
S2T measured with respect to lepton plane.

We consider here the case of pure transverse po-
larization of hadron two, so that we put λ1 = 0 and
|S1T | = 1 (λ2 = 0 and |S2T | = 1 in our notation) in
the respective equations of ref. [2] (Eqs. (21) and (22)
in ref. [2]) for unpolarized and single polarized cross-
sections. Besides, taking into account only the dom-
inating electromagnetic contributions and neglecting
(just as in ref. [2]) the “higher harmonic” term con-
taining 3φ dependence, one gets the following simpli-

∗Electronic address: sisakian@jinr.ru
†Electronic address: shev@mail.cern.ch
‡Electronic address: nagajcev@mail.desy.de
§Electronic address: ivon@jinr.ru
1 See [1] for detail of the respective kinematics.

fied equations for the QPM unpolarized and single-
polarized cross-sections :

dσ(0)(H1H2 → ll̄X)

dΩdx1dx2d2qT
=

α2

12Q2

∑

q
e2

q

×
{

(1 + cos2θ)F [f̄1qf1q] + sin2θcos(2φ)

×F
[

(2ĥ · k1T ĥ · k2T

− k1T · k2T )
h̄⊥

1qh
⊥
1q

M1M2

]}

, (1)

and

dσ(1)(H1H
↑
2 → ll̄X)

dΩdφS2
dx1dx2d2qT

=
α2

12Q2

∑

q
e2

q

×
{

(1 + cos2θ)F [f̄1qf1q] + sin2θcos(2φ)

×F
[

(2ĥ · k1T ĥ · k2T − k1T · k2T )
h̄⊥

1qh
⊥
1q

M1M2

]

+(1 + cos2θ)sin(φ − φS2
)F
[

ĥ · k2T
f̄ q
1f⊥q

1T

M2

]

−sin2θsin(φ + φS2
)F
[

ĥ · k1T

h̄⊥
1qh1q

M1

]}

. (2)

Here ĥ ≡ qT /|qT |, h1q(x,k2
T ) is the kT -

dependent transversity distribution, while h⊥
1q(x,k2

T )

and f⊥q
1T (x,k2

T ) are kT -dependent T-odd PDFs (see
ref. [1] for review). The convolution product is de-
fined [2] as

F [f̄qfq] ≡
∫

d2k1T d2k2T δ2(k1T + k2T − qT )

×
[

fq(x1,k
2
1T )f̄q(x2,k

2
2T ) + (1 ↔ 2)

]

. (3)

Let us first consider the purely unpolarized DY pro-
cess. Notice that Eq. (1) is very inconvenient in appli-
cation because of the complicated qT and kT depen-
dence entering Eq. (1) via the convolution, Eq. (3).
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To deal with Eq. (1) the model

h⊥
1q(x,k2

T ) =
αT

π
cq
H

MCMH

k2
T + M2

C

e−αT k
2
T f1q(x), (4)

where MC = 2.3 GeV , cq
H = 1, αT = 1 GeV −2 and

MH is the hadron mass, was proposed in ref. [2].
With a such assumption one then calculates [2, 3] the
coefficient κ ≡ ν/2 at cos 2φ dependent part of the
ratio

R ≡ dσ(0)/dΩ

σ(0)
, (5)

which allows to explain2 the anomalous cos 2φ depen-
dence [4, 5] of the unpolarized DY cross-section. How-
ever, the author of ref. [2] stresses that Eq. (4) is just
a “crude model”. Besides, Eq. (4) can not help us
to extract the quantity h⊥

1 from the unpolarized DY
process.

Thus, to avoid these problems, let us apply the qT

weighting approach which was first proposed and ap-
plied in refs. [6] and [7] with respect to a particular
electron-positron annihilation process and in ref. [8]
with respect to semi-inclusive DIS. To use the advan-
tage of qT integration, one should extract from un-
polarized DY process the properly integrated over qT

ratio (c.f. Eq. (5))

R̂ =

∫

d2qT [|qT |2/M1M2][dσ(0)/dΩ]
∫

d2qT σ(0)
, (6)

parametrized as

R̂ =
3

16π
(γ(1 + cos2 θ) + k̂ cos 2φ sin2 θ), (7)

that should be compared3 with the equation (see refs
[2, 4])

R =
3

16π
(1 + λ cos2 θ + µ sin 2θ cosφ

+(ν/2) cos 2φ sin2 θ) (ν ≡ 2κ, λ ≃ 1, µ ≃ 0).(8)

By virtue of Eq. (1), the coefficient k̂ at cos 2φ

dependent part of R̂ reads

k̂ =

∫

d2qT [|qT|2/M1M2]

×
∑

q

e2
qF [(2ĥ · k1T ĥ · k2T − k1T · k2T )

h̄⊥
1 h⊥

1

M1M2
]

×
(

∫

d2qT

∑

q

e2
qF [f̄1f1]

)−1

, (9)

2 Notice that the large values of ν cannot be explained by lead-
ing and next-to-leading order perturbative QCD corrections
as well as by the high twists effects (see [2] and references
therein).

3 Obtaining Eg. (8) one sets [2] λ = 1 and µ = 0 in the most
general equation for R (Eq. (5) in ref. [2]), which is justified
[2] by the expectation from next-to-leading order QCD and
the data (refs [4, 5]) in the Collins-Soper frame.

and, due to the properly chosen weight |qT |2, the inte-
gration over qT leads4 to the following simple equation

for k̂:

k̂ = 8

∑

q e2
q(h̄

⊥(1)
1q (x1)h

⊥(1)
1q (x2) + (1 ↔ 2))

∑

q e2
q(f̄1q(x1)f1q(x2) + (1 ↔ 2))

, (10)

where the standard notation [6, 7, 8]

h
⊥(n)
1q (x) ≡

∫

d2kT

(

k2
T

2M2

)n

h⊥
1q(x,k2

T ) (11)

for the n-th moment of kT -dependent PDF is used.

Thus, one can see that the numerator of k̂ is factor-
ized out in the simple product of the first moments
of h⊥

1 distributions. This allows to directly extract

these quantities from k̂ which should be measured in
unpolarized DY. This, in turn (see below), allows to
directly extract the transversity distributions h1 from
the single spin polarized DY. Notice that now there is
no need in any model assumptions about kT depen-
dence of h⊥

1 distributions.
Let us now consider the single transversely polar-

ized DY process H1H
↑
2 → l+l−X and define the fol-

lowing single-spin asymmetries (SSA)

Ah(f) =
∫

dΩdφS2
sin(φ ± φS2

)[dσ(S2T ) − dσ(−S2T )]

×
(
∫

dΩdφS2
[dσ(S2T ) + dσ(−S2T )]

)−1

, (12)

where the single–polarized cross-section is given by
Eq. (2). It is clear that in the difference dσ(S2T ) −
dσ(−S2T ) only the terms of Eq. (12) containing
sin(φ − φS2

) and sin(φ + φS2
) survive (and are multi-

plied by two). Besides, the properly chosen5 weights:
sin(φ + φS2

) and sin(φ − φS2
), allow to separate the

contributions containing h⊥
1 and f⊥

1T PDF with the
result

Ah = −1

4

∑

q e2
q F

[

ĥ·k1T

M1
h̄⊥

1qh1q

]

∑

q e2
q F

[

f̄1qf1q

] , (13)

and

Af =
1

2

∑

q e2
q F

[

ĥ·k2T

M2
f̄ q
1f⊥q

1T

]

∑

q e2
q F

[

f̄1qf1q

] . (14)

The asymmetries like Af given by Eqs. (12), (14)
and their application with respect to Sivers func-
tion f⊥

1T (x,k2
T ) ≡ −(M/2|kT |)∆N

q/H↑ (x,k2
T ) extrac-

tion from the data were considered in detail in refs.

4 The normalization condition
∫

d2
kT f1q(x, k2

T
) = f1q(x) is

used (see, for example ref. [1]).
5 The analogous weighting procedure was applied [9] in the case

of transversely polarized SIDIS by the HERMES collabora-
tion.
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[10, 11], so that we concentrate here on the asymmetry
Ah given by Eqs. (12) and (13).

Notice that asymmetry Ah given by Eqs. (12), (13)
is inconvenient in application because of the compli-
cated qT and kT dependence entering the convolution.

So, we again apply the qT integration method [6, 7, 8]
(see also its application for the SIDIS processes in ref.
[9] and for the Sivers PDF extraction from the single
polarized DY in ref. [10] ):

Âh =

∫

dΩdφS2

∫

d2qT (|qT |/M1) sin(φ + φS2
)[dσ(S2T ) − dσ(−S2T )]

∫

dΩdφS2

∫

d2qT [dσ(S2T ) + dσ(−S2T )]
, (15)

so that one easily gets

Âh = −1

2

∑

q e2
q[h̄

⊥(1)
1q (x1)h1q(x2) + (1 ↔ 2)]

∑

q e2
q[f̄1q(x1)f1q(x2) + (1 ↔ 2)]

. (16)

Thus, one can see that Âh is also factorized in the

simple product of h̄
⊥(1)
1 and h1.

Among variety of DY processes, DY processes with

antiproton (p̄p → l+l−X , p̄p↑ → l+l−X , p̄↑p↑ →
l+l−X) have essential advantage because the charge
conjugation symmetry can be applied. Indeed, due
to charge conjugation, antiquark PDF from the an-
tiproton are equal to the respective quark PDF from
the proton. Thus, Eqs. (10), (16) in the case of p̄p
collisions are rewritten as

k̂
∣

∣

∣

p̄p↑→l+l−X
= 8

∑

q e2
q[h

⊥(1)
1q (x1)h

⊥(1)
1q (x2) + h̄

⊥(1)
1q (x1)h̄

⊥(1)
1q (x2)]

∑

q e2
q[f1q(x1)f1q(x2) + f̄1q(x1)f̄1q(x2)]

, (17)

and

Âh

∣

∣

∣

p̄p↑→l+l−X
= −1

2

∑

q e2
q[h

⊥(1)
1q (x1)h1q(x2) + h̄1q(x1)h̄

⊥(1)
1q (x2)]

∑

q e2
q[f1q(x1)f1q(x2) + f̄1q(x1)f̄1q(x2)]

, (18)

where now all PDF refer to protons. Neglecting
squared antiquark and strange quark PDF contribu-
tions to proton and taking into account the quark
charges and u quark dominance at large6 x, Eqs. (17)
and (18) are essentially given by

k̂(x1, x2)
∣

∣

∣

p̄p↑→l+l−X
≃ 8

h
⊥(1)
1u (x1)h

⊥(1)
1u (x2)

f1u(x1)f1u(x2)
, (19)

and

Âh(x1, x2)
∣

∣

∣

p̄p↑→l+l−X
≃ −1

2

h
⊥(1)
1u (x1)h1u(x2)

f1u(x1)f1u(x2)
. (20)

One can see that the system of Eqs. (19) and (20) has
very simple and convenient form in application. Mea-

suring the quantity k̂ in unpolarized DY (Eqs. (6),

6 The large x values is the peculiarity of the p̄p experiments
planned at GSI – see ref. [12]

(7)) and using Eq. (19) one can obtain the quantity

h
⊥(1)
1u . Then, measuring SSA, Eq. (15), and using

the obtained quantity h
⊥(1)
1u , one can eventually ex-

tract the transversity distribution h1u using Eq. (20).
Let us stress once again that now there is no need in
any model assumptions about kT dependence of h⊥

1

distributions.

In order to obtain squares of h
⊥(1)
1u and f1u in Eqs.

(19) and (20), one should consider them at the points7

x1 = x2 ≡ x (i.e., xF ≡ x1 − x2 = 0), so that

h
⊥(1)
1u (x) = f1u(x)

√

k̂(x, x)

8
, (21)

7 The different points xF = 0 can be reached changing Q2

value at fixed s = x1x2 Q2
≡ τ Q2.
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and

h1u(x) = −4
√

2
Âh(x, x)
√

k̂(x, x)
f1u(x). (22)

To estimate the possibility of h
⊥(1)
1u and h1u mea-

surement, the special simulation of DY events with
the PAX kinematics [12] are performed. The proton-
antiproton collisions are simulated with PYTHIA
event generator [13]. Two samples are prepared: for
the collider mode (15 GeV antiproton beam colliding
on the 3.5 GeV proton beam) and for fixed target
mode (22 GeV antiproton beam colliding on an in-
ternal hydrogen target). Each sample contains about
100 K pure Drell-Yan events. Notice, that this is just
the statistics planned to be achieved by PAX. Indeed
(see ref. [12]), the sample for collider mode corre-
sponds to about one year of data-taking with a cross-
section of 40 mb and a luminosity of 2×1030cm−2s−1.
For fixed target mode it can takes about three months
with a cross-section of 30 mb and a luminosity of
about 1031cm−2s−1.

Unfortunately, the original PYTHIA generator we
deal with does not reproduce the corresponding to DY
experiments [4, 5] nontrivial qT and x dependencies of
the quantity ν entering Eq. (8). So, to estimate the

possibility of h
⊥(1)
1u and h1u measurement, one should

properly introduce these dependencies in accordance
with the existing experimental data. To this end we
apply the commonly used Monte-Carlo method based
on weighting of the kinematical events. To apply the
weighting procedure in our case, we just ascribe to
each event the weight w = R which, in accordance
with the data [4, 5], is given by Eq. (8), where λ ≃ 1,
µ ≃ 0 and ν has nontrivial qT and x dependencies.
The qT dependence of ν is taken from refs. [2, 3] –
Eq. (49) in ref. [2] and Eq. (21) in ref. [3], and this
qT dependence properly fits the existing experimen-
tal data [4, 5]. However, in refs. [2, 3] (where the
simplified Boer’s model is applied) there is no (im-
portant and corresponding to DY experiments [4, 5])
x-dependence of ν at all, so that we take this depen-
dence from ref. [4].

To check the validity of the angular distribution
analysis of the weighted events we reconstruct the qT

and x1 dependencies of ν. The results are shown in
Figs. 1, 2. One can see a good agreement8 between
input (solid lines) and reconstructed (points with er-
ror bars) values.

Thus, applying the above described weighting pro-
cedure, our simulations reproduce the nontrivial an-
gular dependence of R with qT - and x-dependent ν.
These dependencies are in accordance with the respec-
tive input dependencies obtained in experiments on

8 As an additional check of our analysis validity, we reproduce
the input zero value of µ.
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FIG. 1: Reconstructed from simulations (fixed target mode)
quantities µ and ν versus qT in comparison with the input
(corresponding to experimental data) dependencies (solid
lines).
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FIG. 2: Reconstructed from simulations (fixed target mode)
quantities µ and ν versus x1 in comparison with the input
(corresponding to experimental data) dependencies (solid
lines).

DY [4, 5]. Now it is straightforward to reconstruct the

qT -weighted quantity R̂ (Eq. 6) and, consequently, k̂
(Eq. 7). The results are shown in Fig. 3. The values

of k̂ at averaged Q2 for both modes are found to be
1.2±0.2 for collider mode and 1.0±0.2 for fixed target
mode.

The quantity h
⊥(1)
1u is reconstructed from the ob-

tained values of k̂ using Eq. (21) with xF = 0 ± 0.04.
The results are shown in Fig. 4. The obtained

magnitudes of h
⊥(1)
1u are in accordance (in order of

value) with the respective magnitudes obtained with
the model (4) for h⊥

1u(x,kT ). Indeed, for example
for the collider mode (Q2

average ≃ 9 GeV 2, so that
x1 ≃ x2 ≃ 0.2 at the point xF ≃ 0) the results from

the simulations and from the model (4) are h
⊥(1)
1u ≃ 1

and h
⊥(1)
1u ≃ 0.5, respectively.

Using the obtained magnitudes of h
⊥(1)
1u we estimate

the expected SSA given by Eq. (20). The results are
shown in Figs. 5 and 6. For estimation of h1u entering

SSA together with h
⊥(1)
1u (see Eq. (20)) we follow the
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FIG. 3: k̂ versus x1 at xF ≃ 0. Data is obtained with
MC simulations for collider (closed circles) and for fixed
target mode (open circles). For better visibility (to avoid
overlapping) the points for collider (fixed target) mode are
shifted 0.01 to the left (right) along the x-axis.
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FIG. 4: h
⊥(1)
1u versus x1 at xF ≃ 0. Data is obtained with

MC simulations for collider (closed circles) and for fixed
target mode (open circles). For better visibility (to avoid
overlapping) the points for collider (fixed target) mode are
shifted 0.01 to the left (right) along the x-axis.

procedure of ref. [14] and use (rather crude) “evolu-
tion model” [2, 14] , where there is no any estimations
of uncertainties. That is why in (purely qualitative)
figures 5 and 6 we present the solid curves instead
of points with error bars. To obtain these curves we

reproduce x-dependence of h
⊥(1)
1u in the considered re-

gion, using the Boer’s model, Eq. (4), properly nu-
merically corrected in accordance with the simulation
results.

To estimate the measurability of the quantities we
deal with, it is relevant to estimate the upper bounds

on h1, h
⊥(1)
1 and then on k̂ and Âh. Obtaining

h
⊥(1)
1u and h1u one deals with Eqs. (19), (20) ap-

plied at the points x1 ≃ x2 ≃
√

Q2/s, so that we

perform the estimation of the upper bounds on k̂
and Âh at the points xF ≃ 0 corresponding to the
average Q2 values for both collider and fixed target

modes. The maximally allowed value of h
⊥(1)
1 can

be found operating just as it was done with respect

to the quantity f
⊥(1)q
1T (first moment of the Sivers

function) in ref. [10]. To this end we first apply
the inequality9 [15] (|kT |/M)h⊥

1 (x,k2
T ) ≤ f1(x,k2

T ).
Then, using the estimation (see ref. [10] and refer-
ences therein) 〈kT 〉 ≃ 0.8 GeV one easily gets the up-

per bound on h
⊥(1)
1u : h

⊥(1)
1u

<
∼ 0.4f1u(x). On the other

hand, maximally allowed value of h1u can be found
using the Soffer [16] inequality |h1u| ≤ (f1u + g1u)/2.
For the PAX kinematics s = 43 GeV 2, Q2

average ≃
5 GeV 2 for the fixed target mode and s = 215 GeV 2,
Q2

average ≃ 9 GeV 2 for the collider mode. Thus, at
the point xF = 0 we deal with, x1 ≃ x2 ≃ 0.3 and
x1 ≃ x2 ≃ 0.2 for the fixed target and collider modes,

respectively. Then, the inequalities on h1u and h
⊥(1)
1u

give10 h1u (max) ≃ 1.5 (f1u = 1.9, g1u = 1.0 ) and

h
⊥(1)
1u (max) ≃ 0.8 for fixed target mode while h1u (max) ≃

2.3 (f1u = 3.1, g1u = 1.5) and h
⊥(1)
1u (max) ≃ 1.2 for

collider mode. Using these estimations of h1u (max)

and h
⊥(1)
1u (max) in Eqs. (19), (20) it is straightforward

to obtain the maximally allowed values of k̂ and Âh:

k̂(max) ≃ 1.4 and |Âh (max)| ≃ 0.17 for fixed target

mode while k̂(max) ≃ 1.2 and |Âh (max)| ≃ 0.14 for
collider mode. One can see that obtained estimations
of upper bounds on h

⊥(1)
1u , k̂ and Âh are in accordance

with the results presented by Figs. 3-6.

Looking at the (preliminary) estimations presented
by Figs. 3 and 4, one can conclude that the quantities

k̂ and h
⊥(1)
1u are presumably measurable in most of

the considered x-region. At the same time, looking
at Figs. 5 and 6 one can see that for both modes
SSA Âh is estimated to be about 6-8%. On the other
hand, as it was argued in Ref. [12] (see section “Single
Spin asymmetries and Sivers Function”, p. 25), the

studied in ref. [10] SSA A
sin(φ−φS)

qT
MN

UT of order 5-10%
can be measured by PAX. It is obvious that studied in
this paper SSA Âh, weighted with sin(φ+φS) and the
same weight qT /MN , is absolutely analogous to SSA

A
sin(φ−φS)

qT
MN

UT , so that it is clear that if A
sin(φ−φS)

qT
MN

UT

of 5-10% is measurable, then Âh of 6-8% is measurable
too.

Thus, it is shown that it is possible to directly ex-
tract the transversity and its accompanying T-odd
PDF from the unpolarized and single polarized DY
processes with antiproton participation. It is of im-
portance that there is no need in any model assump-

9 This inequality is directly obtained by relaxing the bound
Eq. (16) in ref. [15] (eliminating the unknown distribution
in that bound).

10 Performing these estimations we use GRSV2000LO
parametrization [17] for g1u and GRV98LO parametrization
[18] for f1u.
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FIG. 5: SSA given by Eq. (20) versus xF for collider mode
for three values of Q2: 50 GeV2 (lower curve), 25 GeV2

(middle curve) and 9 GeV2 (upper curve).
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FIG. 6: SSA given by Eq. (20) versus xF for fixed tar-
get mode for three values of Q2: 16 GeV2 (lower curve),
9 GeV2 (middle curve) and 4 GeV2 (upper curve).

tions about kT dependence of h⊥
1 . One can directly ex-

tract both h1 and first moment of h⊥
1 from the single-

polarized and unpolarized DY processes, since these

quantities enter the measured k̂ and SSA Ah in the
form of simple product instead of complex convolu-
tion. The preliminary estimations for PAX kinemat-

ics show the possibility to measure both k̂ and SSA

Âh and then to extract the quantities h
⊥(1)
1 and h1.

Certainly, the estimations of k̂ and Âh magnitudes
obtained it this paper are very preliminary and show
just the order of values of these quantities. For more
precise estimations one needs the Monte-Carlo gener-
ator more suitable for DY processes studies (see, for
example. ref. [3] ) than PYTHIA generator which we
used (with the proper weighting of events) here.

Notice, that it is straightforward to properly modify
the procedure discussed in this paper to DY processes:
π−p → µ+µ−X and π−p↑ → µ+µ−X , which could
be study [19] in the COMPASS experiment at CERN.
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