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I. Introduction 

It has been noted in recent theoretical papers that study of highly in- 

elastic sc:lttering of leptons by protons is one of the most important means 

of investiqating the structure of particles at short distances I-3 . Recent 

experiments on the Stanford accelerator 4 have revealed a very interesting 

behavior of the inelastic amplitudes, and have been used as the basis for 

the development and verification of a number of theoretical ideas 5-7 . On 

the other hand, a number of restrictions were established in refs. 8 and 9 

for the asymptotic behavior of the inelastic amplitudes for processes 
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involving the participation of only strongly interacting particles. 

These restrictions were derived from some very general principles of field 

theory. Generalization of these results to inelastic processes involving 

the participation of leptons should lead to exact restrictions for the in- 

elastic form factors. 

In this paper we shall invest.i.gate muon pair production for highly 

inelastic collisions of two hadrons at high energies. It is shown that at 

high energies and high momentum transfers the form factors for this process 

are related to the matrix elements of equal-time electromagnetic current 

commutators. The asymptotic sum rules obtained by this procedure can be 

used as a basis for verifying the structure of the electromagnetic hadron 

current. In particular, the predictions of the quark current algebra and 

the field algebra for the muon polarization turn out to be qualitatively 

different. Studies of muon polarization in the above process are also 

essential for the analysis of experiments involving searches for the 

W-meson in proton-proton collisions using polarized muon detection at large 

10 angles . The close connection between the W-meson production and the 

electromagnetic production of muon pairs has already been discussed in 
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the literature. 

In Part II we shall discuss the kinematics of the process and will 

introduce the necessary definitions and notation. 

In Part III it will be shown how the cross section for the physical 

process is related to the electromagnetic current commutator. 

In Part IV we shall derive the sum rules relating the limiting values 

of the form factors on the one hand and the equal-time commutators for the 

spatial components of the electromagnetic current and the time derivatives, 

on the other. 

In Appendix I we shall consider the isolation of the contributions due 

to uncoupled diagrams, and in Appendix II we shall analyse some kinematic 

questions. 

II. Kinematics, Notation, and Definitions 

Consider the inelastic collision between a hadron (a> and a proton, 

which results in the creation of a muon pair and a system of hadrons N. 

In the lowest-order electromagnetic interaction the process proceeds through 

the emission and decay of a virtual photon Y* : 

a+p -9 y* +N. 
/,A - 

P P 
(2.1) 
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The incident hadron can be a fin'+ meson, a proton , or an antiproton: 

f a =n 1 P,i; The notation which we shall employ for the moment is defined 

in Figure 1 : 

Figure 1 

The conservation laws for the 't-momentum are of the form 

P’ +p=q+p 3 N 

q=k’+k. 

(2.2) 

(2.3) 

The corresponding element of the T matrix is defined by the following 

expression 

4 na 
T,r = a t p < Nout 1 J,(O) (pp' in:, (2.4) 9 

where cp =ii(k)y' v(k') is the electromagnetic current associated 
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with the muon pair, JV(x) is the operator for the electromagnetic current 

of hadrons, and e2 1 a=-.---=- is the fine structure constant. The 477 137 

symbol c shows that the uncoupled parts in the matrix element of the 

current must be ignored. 

The total cross section for the process defined by (2.1) in the case of 

unpolarized particles a and p, summed over the polarizations of the 

lepton pair, can be written in the form 

a a 4R 0 d’ 9 I- 
qcc qv U= -$gh-kY+ qa )Ppv, (2.5) 

dpp’)’ -m2m” (277) 4 

where m and m' are the masses of the proton and the particle a, 

respectively. In the above expressions we have used the following notation 

and definitions : 

p,(p,p’,q)= %(2~)‘6(p+p’-q-pN)<pp ‘in 1 Jp(0)INout>C<NoutIJ,(O)Im,Tn>F (2.6) 

dk’di: ’ 
(28)’ 6(k’ tk -q)r “,” =’ 

P 
I 3 ($k; + k,,k,’ - P&I= 

where 

“(&= ;i;;f-(l- 
q2 -4m 2 q2 -4m’ 

w 
‘) d q2 Cl =J-. mao 677 P 

(2.7) 

(2.8) 
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The quantity dfi is the solid angle element around the direction 

of the momentum of one of the muons in the center of mass system of the 

muon pair 3 = 0; and 
"P 

is the muon mass. 

Conservation of the current demands that the tensor P,(P*P'q) 

can be expanded in +;erms of five linearly independent, gauge-invariant 

structures: 

where 

Pp = pP - p’q ---p-- 9P 9; =p’- L.cLqp: 
P qa 

(2.9) 

(2.10) 

All the form factors pi are real scalar functions of four independent 

invariant variables constructed out of the vectors p, p' and q. For 

example, we can choose the variable q2 (the square of the mass of the 

virtual photon) and the usual Mandelstam variables s, t, u: 

S=(p+p’)’ =2 +m"+2mc 

t=(p)-q )‘m A ‘, 

U =(p-q)=m'+q'-2v, 

(2.11) 
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where the invariant 0 = p.q in the laboratory system (T = 0) is 

proportional to the virtual photon energy and E u&p ') is the energy 

of the incident particle in the laboratory system. If we introduce one 

further invariant, namely rn2# = P2* (the square of the invariant mass 

of the hadron system), there will be a linear relation between the five 

invariants : 

S+t+u=qa +m;4,+ma+m”. (2.12) 

It will be convenient to expand the tensor p in terms of the 
‘ILV 

structures corresponding to definite polarizations of the virtual photon. 

The directions of the polarization vectors for the virtual photon in the 

laboratory system p = 0) will be defined as shown in Figure 2 : F 

\ \ \ \ . 
Figure 2 



The corresponding relativistic polarization four-dimensional vectors are 

of the form 

CT+ 9’ 

(P =[ -- (YY*)2 -Y??* a 

IT,) 1 1 
fP =- 

, f 
PVAP P” p Aqp ’ 

t/s2 \/(p.pp -mm?m’” 

where 

Y2 = +m2 qa-v 2), 

!?*? = -$.(m ’ t ’ -(P ‘q )* h 

YJ*, + 
P ( 

m fq2 - 4P ‘9)). 

(2.13d 

(2.13b) 

(2.13~) 

(2.14) 

It is readily seen that the polarization vectors have the following 

properties : 

(0 p (I) fp q = 0 , t p f(k’p a-6,, (i,k =T, ,T a,L ), 

I: p 2’) P-g +2!!2!i. 
i=T,.T2,L p v PV q1 

(2.15) 

Using (2.13) and (i?.l5), we can expand (2.9) so that it takes the form 

(T )) (T1) 0~) (T1) (Lb CL) 
P =p < < +p c c +p t 6 + 

P” T, P ” T2 p " L P Y 

(+) 
+ P TL(c 

(2.16) 
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where 

1 
PL=P, - 9 P, - 

_ (94 ‘)” 
92 p3 - 293* p,, (2.17a) 

p.,:, =P, - 
(Ye? 3’ -.Y?P * 

Y2 p3 ’ (2.17b) 

P 
Tr4 

;;p I * (2.17~) 

(+) (-) 9.3 ’ ‘/a 
P TL i ip TL 

= .-+Y’Y ‘l-(Y.P,a I p, + 

+ [Y2P2 -(R?‘)* l’/‘(p, Lip, 1. 
(2.17d) 

Substituting (2.16) into the formula for the total cross section for the 

process given by (2.51, we obtain : 

4’7 1 aa u= d’q / (2, dn 7 
d(p.p 7’ -fm’2 

qa p(s, q’ ,A%‘), (2.18) 

where 

P =(-g’“/ + 4/19y)p =p 
q2 PV T, 

+p. +p,. (2.19) a 

In (2.18) the integration with respect to the momentum of the virtual 

photon can be reduced to integration with respect to the invariant variables, 

For example, 

1 d4q= -_L__ dq’ d A2 dv dc$, 
4 q(p.p ')a -m2m ” 

(2.20) 



where 9 is the a&m&ha1 angle. 

The limits of integration can be found from the conservation laws 

which define the physical domain of the process (2.1) (see Appendix II). 

Since we shall be concerned with high energies of the colliding 

hadrons for which f >>m, f>>m’ , we have 

A2 
o(f)za2 l Imf dq2 @+?Tr 

8~ mc ----Tj -g-- "(9' lqaimfA2 / da p (s, q2, A2, 8 ), 
_ a” 

2m 

(2.21? 

where c* =c A z 
A2-q 2 ) and ‘- --&A is the momentum transfer in the 

laboratory system. 

We note that the total cross section for the process (2.1) is determined 

only by the form-factor sum P + P 
=2 

+p, (+I 
=I , and is independent of pTz . 

The various form factors can be measured separately by investigating the 

angular distribution of the muon momentum directions in the center of mass 

system of the pair in which T = 0. 

If we take the direction of the momentum T in the rest system of the 

pair to lie along the z-axis, and the direction toward the production plane 

to be the y-direction, we obtain 

a=-;‘= ICI (sin8cos$, Sin’8 sin+, ~43~8). (2.22) 
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As a result, the normalized angular distribution is found to be 11 (see also 

ref.12); 

W(6,$)= -L- 1 
4 n-p (l- $3 

I PT*U-v 2 sina6cosa$)+ 

+PT,(l-v2sin28sina~)+PL(l-vZCOS2e)- p (+) v2 sin20 oos+l, 
TI. 

(2.23) 

where f =PL +pT, ,+pTa ' and v - 1:: _ \/ q2-4mi 
qa 

is the velocity of the 

muons in the ‘;r = 0 system. 

It was noted in ref.l'l that the form factor p c-1 
TL 

is proportional to 

the polarization of one of the muons along the normal to the production plane, 

i.e. along the y-axis. We note also that measurement of the form factors 

P T =PT*+PT K P, 2 can be carried out by investigating the distribution 

only with respect to 6 : 

w(e).. Td+ w(e,+)= 
0 

. 1 = I pL(l-~2~0~2e)+p (1-T sin "a)1 . 
2P ( I-- $?) T (2.24) 

III. C u r r e n t commutators 

Let us relate the quantity pPV(p,p ',q) in the defin%ion of the cross 

section for the process (2.1) by the Fourier transform of the diagonal matrix 
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element of the electromagentic current commutators : 

Q, (p,p ‘,q)= j-d~:-“~ < pp’in 11 JP (x), Jv(0)lIpp’ in 1’ = 

_ _ 
= a pv (P,p ‘. 9) -a vcc (P,P ‘- 9). (3.1) 

It is understood that the particles in brackets are unpolarized. The 

symbol c shows that we are taking that part of the matrix element of the 

two-current commutator which is coupled as a whole. It is obvious that 

A and a 
-vu 1J.V 

can be expanded in terms of five independent, gauge invariant 

structures by analogy with the expansion given by (2.91, where 

A, (P*P ‘,q)=a, (P,P : q)-ai (P,P ‘-9) 
I =1.2.3,4 (3.M 

and 

We note that the quantities Ai have no definite symmetry properties with 

respect to U 2 for fixed values of the variables s, q , and A2. In fact, 

if we substitute q + -q, we have 

A2 dA’a =(p '+q )? =2(m’tq 2)-A? (3.3) 
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However, if instead of the variable A2 we fix the ratio 

P ‘. q m’% q2-A2 
a=---= --1 

P-9 2u 

then the quantities A ,=,, 2,3,4 (s,q’ ,Q,v) and * I (s,q'%v) become 

odd and even functions of V respectively. 

Let us now discuss in greater detail the quantity a 
Id 

Using the 

completeness of the "out" - state vectors, we obtain 

a,(p,p:q)= t’(217)~ G(p+p’-q-pN) <pp ‘in\Jr(o) INout XNout!.!,(O)(pp’in>, (3.5) 

where the symbol c above the summation sign indicates that we are selecting 

only the matrix elements of the two-current product that are coupled as a 

whole. 

Let us divide the matrix element <NoutlJp(0)l pp’in> into uncoupled 

and coupled parts in accordance with Figure 3 (see Appendix I). 

As a result the quantity a can be written in the form 
w 

$(P9Pr9)=jIn, (P*P :q )+ Tw (p,p: q), (3.6) 

where the quantity p 
PV 

is the fully coupled part of the matrix element 

for the two-current product, defined by (2.6), and ‘$ 
MU 

represents the 

contribution of the fifteen weakly coupled generalized z-diagrams shown 
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symbolically in Figure 4. 

From the law of conservation of momentum and the spectral character 

condition it follows that for q2 > 0: 

1. %u 
is nonzero for 

(3.7d 

and 

2.7 is nonzero for 
WJ 

w <O; m a 
N L (6 +\/&a. (3.7b) 

It is clear from (3.7b) that in the limit as s + co and q2 > 0 the 

quantity Tutit, which corresponds to the contribution of the z-diagrams is 

determined by the intermediate states of the hadrons N with infinitely 

Hence it follows that when q2 > 0 

t?im p” 0. 
a-D= pw = 

25 +o (3.8) 
* 

IV. Dynamics in the case of infinite 

momentum and asymptotic sum rules 

We shall show below that the problem of the behavior of the form 

factors for the muon-pair production process (2.1) at high energies of 
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the colliding hadrons and high energies and masses of the virtual photon, 

when 

s, 9’ , w -Bea 

- 

a- p’*q- fixed ,'o =-$ = fixed 
P-P 

(4.1) 

can be reduced to an investigation of the equal-time commutation relations 

between the spatial components of the operators for the electromagnetic 

hadron currents and their time derivatives. 

The use of equal-time commutation relations is considerably simplified 

if we use the center of mass system of the muon pair, where q= ( go’ 0). 

We note that, in this system, only the spatial components of the gauge- 

invariant tensors A and p are nonzero. 
vu )lV 

Integrating with respect to q. in (3.1) we obtain the following 

relations 

$--‘dq o *,,(P,P ‘9 qo I= B,, (p’,“p 9, 

~~qodqo*,, (P,P ‘9 9 o)=C,, (;,; ‘) 

(4.W 

(4.2b) 

and so on. 
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In these expressions 

B, ,(b,p”j = Idz<p ,~‘inl[‘J;(~,O)J~(O)ll pp ‘in>, (4.3a) 

c,, (pf;‘) = fJdtc pp ’ in I[ J, (?,O), Jk(O)l\ pp ‘in >, (4.3b) 

where the equal time commutators are determined by the particular current- 

algebra model. 

We note that in the above system (q = 0) the invariant variables on 

which the form factors depend are given by 

S=ma+m’a+2(pop’ “‘), o-PP 

qa “loa 7 

Y = PO9 0’ . (4.4) 

PO a = -. 
PO 

Hence it follows that the integration in (4.2) is carried out along the 

parabola in the (q2, y> plane for fixed values of the 

variables s, a. 

Such sum rules with arbitrary but fixed momenta p and 2 will, 

in general, contain z-diagram contributions. As was noted in the preceding 

section, in the limit as LS+OO and q' > 0 the contributions of the 

z-diagrams are determined by the intermediate states of the hadrons N with 

infinitely heavy effective masses mu. 
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In accordance with the generally accepted ideology of the current 

algebra, we shall assume that the contributions of the z-diagrams vanish in 

the limit as '--+ co. 

This assumption turns out to be valid when we can change the order of 

the transition to the limit s -+ co and of the integration in (4.2). In 

fact, for example, in the case of the sum rules given by (4.2a) the z-diagram 

contribution is determined by expressions of the form : 

i 7eJoP=,,(P~P~40)=- /m &p’. (p,p:qo). 
-co * 

N 

(4.5) 

If we now pass the limit s + co under the integral sign for fixed m2 N' 

and use (3.8), we find that the z-diagram contribution to the sum rules 

vanishes in this limit. 

In the center of mass system of the lepton pair, transition to the limit 

s + a, is realized when the following condition is satisfied : 

P, rPo’ ab(l* 

P’ a=:L=fixed fl =* 
PO PO 

= fixed 

and the directions of the momenta are chosen so that 

iQ 090, p, I p”, 

(4.6) 

(4.7) 
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a 

We note that for a fixed value of the variable a= & we have 

limit (4.6) 

S 41-P) a 
s,q z ” Loo -= 

2u 20 = fixed ; tv=a= fixed 

We shall now assume that the following limits exist: 

B,, (a,@ 1 = Gm 2~~ B Ik ($,?‘I 
Do .P;- 

a.p = fixed 

C,, (a,S) = fh C,, (p',p"), 
, 

PO .Do- 

a./? = fixed 

.n the 

(4.8) 

(4.9a) 

(‘+.9b) 

where the tensors on the left-hand side of (4.9) are dimensionless model- 

dependent quantities. 

Proceeding now to integration with respect to the variable fib= 9a 
2v , 

in the sum rules (4.2), it can be shown that, in the limit defined by (4.81, 

the form factors P, (s, 9 a ,a,v) have the following behavior : 

At the same time we have the relations 

+;"udoF 
0 

T, (atBIu J-C,, (a,B), 

$yLdwF T (a,#3,~)=Cyy(a,B), 
a 

(4.10) 

(4.11a) 

(4.11b) 
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-&;dw F L(aTP+J )=Czz (a,@), (4.11c) 

(4.11d) 

(4.lle) 

where 

Po+Pb 0 = 0 
2p 0 

= ;(l+a).. 

We have written down only those relations which are parity nontrivial 

in the variable go. The above relations are model-independent and are the 

main results of the present work. 

In the quark model, in which the interaction proceeds through a neutral 

vector field, the commutators are of the form 

[J, (gqO), Jj(0)l=2iS(;)c,,k Q YO z, 8'~ , 
. 

(4.12a) 

- Z~T(Y, B, + Y, B, -27% 6 ,, )+4\16 r, IQ%, 

where 

,Q'=%++Q. 

(4.12b) 

(4.13) 
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In the vector field model the commutators are 

tJ, (:,O),J, @)I = 0, (4.74a) 

IJ-, (x+,0),-J, (o)l = a(;)cab J : (0) J ,b(0) + c nuabers (4. l’tb) 

Using (4.14a), we find from the sum rule (4.11a) that the field-algebra 

model leads to 

0 
;‘IIu FT(;’ (a,fl,o)=O. (4.15) 

Therefore, it may be concluded that a nonzero left-hand side in the sum 

rule (4.11e) is an unambiguous indication that the quark-field algebra is 

valid. It is important to carry out a more detailed study of the structure 

of the quantities B. . 
=J 

and C. . . 
J-J 

In conclusion, the authors should like to thank N.N. Bogolyubov for 

many stimulating discussions, and B.A. Arbuzov, S.M. Bilen'kov, D.I.Blokhintsev, 

S.B.Gerasimov, A.A. Logunov, M.A,Markov, M.A.Mestvirishvili, L.D.Solov'yev, 

F.G.Tkebychava, and R.N. Faustov for fruitful discussions and valuable 

suggestions. 
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Appendix I 

Calculation of the contribution of weakly coupled diagrams 

If the state <N out 1 contains the particle p or p', the matrix 

element <NdI J’p(0) Ipp ‘in > will contain uncoupled parts corresponding to 

free propagation of these particles. In particular, 

< N out I Jp (0) I PP ‘in> =< N out 1 J,(O)\ pp’in>O +<pjp><N out-IJ.C1(OjIp’ >” + 

+<p’lp’xN out IJP (0)lpbc + < pp’out 1 pp’in >< N out 1 JP(0) 1 0 > , 

which can be shown graphically in the form 

Figure 3 

The first term respresents the fully coupled part of the matrix element 

and enters into the definition of the cross section [see (2.411. The 

remaining three terms represent the uncoupled parts and lead to the appearance 

of the so-called generalized z-diagrams. If we substitute this value of the 

matrix element into (3.3) for aP(p,p’,q), we obtain 16 different contri- 

butions to a : 
PLU 
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ap (P,P ‘4) N = X(2n)‘I <pil’in[Jp IN out>‘<h’out[Jy jpp’in>O 6(p+p’-q-pN)+ 

+<pp ‘in1 Jr[ N,pouthout [Jvjp’P6(p’-q-pN)+ 

+<pp’in 1 J p 1 Np ‘out >“< N outI.& 1 P ; S (P-q-P” ) + 

I 

+<pp’in [J, \Npp ‘outP< Nout IJ, (0 >6(p ,.+q)+ 

+<plJ pl~~t7°<Sp’lJJpp.in;6 (p-q-p,,)+ 

+<PI Jp I N,P out;< Np ‘]J,!p*in>O 8(q+p,,,)+ 

+<p jJ,\ Np’out~<Np’lJ,~pin>06 (p-p’-q-pN)+ 

+<p\Jp\Npp’outT< Np’\J,\O7S(p’+q+ p,)+ 

<p’]JrjNout7C< Npi Jylpp’in7’B(p -q-pN)+ 

<p’l Jr /N.p,out>=<Kp jJ,jp+(p’p-q-p, )+ 

<p’IJrl Np’but7=c<Np:Jy]ph(q+ pN) 

<p’I Jp 1 h’.pp’.out hp; J “1 0 7 G(p+q+pN) 

<Ol.J, 1 S out><S pp’lJv 1 pp’in ;6(q+pN) 

< 0 IJ,l Npout><Npp’jJylp*~8 (p+q+pN) 

4 

<O jJB~Np’outx~pp’! .‘,,Ip7*5(p’tqtp,) 

<O 1 Jr lNpp’ou~><Npp’IJ~ !076(p+p’+q+p,)l 
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This expansion is shown symbolically in Figure 4 : 

+ diagrams obtained by the symmetrization of the initial and final states 

Figure 4 

We thus have 

2 where p 
1LV 

represents the sum of 15 weakly coupled z-diagrams. The properties 

of these diagrams were investigated above. 
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Appendix II 

Determination of the boundaries of the physical region* 

The conservation of the &momentum is of the form 

p*+p =Q + PN. 

Substituting A = p' - q, we have 

P+A=PN 

Hence 

where 

A a =III~ -m2 -2ma 
N 

6 = “p-A +-qo) 

(A.11 

(A.21 

The case s Z m corresponds to elastic scattering. A2 and 6 are then 

uniquely related, i.e. they are not independent variables: 

6 =- ba. 
2m 

This gives the minimum value bmin, since qC is then a maximum. Consider 

the case where the virtual photon travels in the backward direction in the 

laboratory system. It is then clear that, for fixed invariants, it receives 

*There is an interesting kinematic analogy between the reaction which we 
are investigating and inelastic neutron creation. Thus, ff we replace 
the square of the lepton mass by our q2 in the Appendix to ref.2, and 
q2 in ref.2 by our A21 we reduce one problem to the other. 
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the minimum energy (~1 min, i.e. 

6 = max E -(so lmlo. 

Let us find this minimum energy (q0) min from the relation 

Aa= m’:q a -2c(q,) m,n -Vf2--‘2 di, I,“,, -q2 . 

Substituting m' Z 0, and solving this equation, we 

q2-A2 rqa 
(9 O)m,n = 7 + - 

q”-AZ 

where 

(A.31 

obtain 

(A.51 

Therefore, in the physical region 

f*=fL. . 
A=+ 

(A.41 

a 
6 q2-A2 

msx = f -(qoJmrn= c(l- -+ 
q -A2 

- -)= 
4f 

=c A2 * + -, 
4f* 

(A.6) 

Aa Aa -v 
2m 

<SC_ f*+ - l 

4c* (A.7) 

Let us now find the physical region of A2 for fixed s and q2. This is 

defined by the condition 

6 mln = 6 ma 3 (~.8) 
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and hence 

where 

A -2 A a ( AZ<+? (A.9) 

.Q) q?c + q 'm -2mfa tf d4mafa +p’ -4q'cm -4qam 
n = . 

2f +m 
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