ECal Prototype for SPD

- 1. Sampling calorimeter essential property:
 - 1. Fine Scintillator Lead structure with sampling fraction (SF) 20-30%
 - 2. Moliere Radius is about 3.3 3.4 cm
 - 3. Number of Radiation length 15-17 depended from number of layers
 - 4. Granularity rectangular cell size 4-5.5 cm depended from particles occupancy
 - 5. Scintillator quality : composition, attenuation length
 - 6. Photo Sensor Photodetector Efficiency (PDE)
 - 7. Long time stability (essential from temperature)
 - 8. WLS fibers quality : diameter, attenuation length
 - 9. Time resolution -

Характеристики неорганических сцинтилляторов

Table 28.4: Properties of several inorganic crystal scintillators. Most of the notation is defined in Sec. 6 of this *Review*.

Parameter: ρ		MP	X_0^*	R_M^*	dE/dx	λ_I^*	$\tau_{\rm decay}$	$\lambda_{ m max}$	$n^{ atural}$	Relative	Hygro-	d(LY)/dT	
Units:	$ m g/cm^3$	$^{\circ}\mathrm{C}$	cm	cm	MeV/cm	\mathbf{cm}	\mathbf{ns}	nm		$output^\intercal$	scopic?	$\%/^{\circ}C^{\ddagger}$	
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	230	410	1.85	100	yes	-0.2	
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9	
BaF_2	4.89	1280	2.03	3.10	6.6	30.7	630^{s}	300^{s}	1.50	36^{s}	no	-1.3^{s}	
							0.9^{f}	220^{f}		3.4^f		${\sim}0^{f}$	
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1300	560	1.79	165	slight	0.3	
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	35^{s}	420^{s}	1.95	3.6^{s}	slight	-1.3	
							6^f	310^{f}		1.1^f			
$PbWO_4$	8.3	1123	0.89	2.00	10.2	20.7	30^{s}	425^{s}	2.20	0.083^{s}	no	-2.7	
							10^f	420^{f}		0.29^{f}			
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	420	1.82	83	no	-0.2	
GSO(Ce)	6.71	1950	1.38	2.23	8.9	22.2	600^{s}	430	1.85	3^s	no	-0.1	
~ /							56^{f}			30^f			

f =fast component, s =slow component

Игорь Алексеев, ИТЭФ

The possible prototypes options:

- 1. KOPIO the best result was achieved in energy resolution
- 2. MPD design under investigation
- 3. COMPASS was completed for MPD as BM&N option

Sampling calorimeters could be used as prototype for SPD ECal

Module design:

- 1. KOPIO 4 cells of 5.5x5.5 cm² rectangular shape
- 2. MPD 16 cells of 4x4 cm² *trapezoidal* shape (~ 1 degree)
- 3. COMPASS 9 cells of 4x4 cm²

Ecal's sampling resolution in experiments of last 20 years

ECAL's Resol. vs Sampling Fraction

Sampling calorimeters summary table

															Nois	
	Ν	Sc	Pb	Ν	Num	X0	mm	Pb	Scint	Pb	Sc	Samp.	Sampl.	Const	е	Res %
							Lengt									
	Tiles	mm	mm	layers	Fibers	n	h	mm	mm	X0	X0	Fract.	B%	A%	C%	1 GeV
Compass	40x40	1,50	0,80	109	16	15,9	256	87	164	15,5	0,4	14,90	8,9	1,1	1,0	9,02
BMN	40x40	1,50	0,30	220	16	12,6	407	66	330	11,8	0,8	31,83	7,1	2,0	1,0	7,44
MPD	40x40	1,50	0,30	220	16	12,6	407	66	330	11,8	0,8	31,83	3,8	1,0	1,0	4,05
SPD	55x55	1,50	0,30	250	16	14,3	463	75	375	13,4	0,9	31,83	3,8	1,0	1,0	4,05
spiral	38x38	1,50	0,70	170	16	21,8	383	119	255	21,2	0,6	16,68	6,5	1,0	1,0	6,65
phenix	55x55	4,00	1,50	66	36	18,3	366	99	264	17,6	0,6	19,94	8,2	2,1	0,0	8,42
КОРІО	110x110	1,50	0,28	300	144	15,8	548	83	450	14,7	1,1	33,75	2,7	1,9	0,0	3,30
VES	28x38	1,50	0,60	224	16	24,8	482	134	336	23,9	0,8	18,93	8,1	2,0	0,0	8,34
solid	6.25 hex	1,50	0,50	194		18,0	398	97	291	17,3	0,7	21,89	5,2	2,0	0,0	5,57
Alice EMCal	56x6	1,76	1,44	77	36	20,1	256	111	136	19,8	0,3	10,25	11,3	1,7	4,8	12,38
LHCb ECAL	40x40	2,00	4,00	66	16	47,4	399	264	132	47,0	0,3	4,46	10,1	0,9	0,0	10,14
LHCb ECAL	40x40	1,50	0,35	230	16	15,2	449	81	345	14,3	0,8	28,58	4,0	1,0	1,0	4,24
COMPASS	150x150	5,00	20,00	40	1	143,0	1000	800	200	142,6	0,5	2,28	35,0	1,0	0,0	35,01
HCAL_BM&N	150x150	5,00	10,00	64	1	114,8	966	640	320	114,0	0,8	4,46	30,0	1,0	0,0	30,02
HCAL_ALPOM	150x150	10,00	10,00	50	1	90,3	1000	500	500	89,1	1,2	8,54	20,0	1,0	0,0	20,02

Ecal of KOPIO

• The best resolution for the "shashlyk" type calorimeter has been achieved by the KOPIO collaboration. A quadratic fit to KOPIO experimental data gives

 $\sigma(E)/E = (1.96 \pm 0.1)\% \otimes (2.74 \pm 0.05)\%/p(E)(GeV),$

where \otimes means quadratic summation.

- photo statistics and no uniformity of light collections add to the total energy resolution $2.1\%/\sqrt{E}$ and $1.8\%/\sqrt{E}$, respectively.
- Attention should be paid to improving the quality of scintillator, optical and mechanical, and to selecting the photo-detector with higher quantum efficiency.

The table of shashlik modules types and where energy resolution

	Generation	Sam	pling	N	~	WLS fiber		Photo N _{pe} ,	N _{p.e.} ,	Energy resolution, %						
	Shashlyk module	Sc, mm	Lead, mm	layers	cm	Туре	D, mm	Detector	muon	1 GeV photon	Sampling term	Photo statistic term	Constant term ¹¹	Noise term ²⁾	Instability of P. D. 3)	Total (1 Gen photon
t	1	4.0	1.40	60	2.2	BCF-92, SC	1.2	PMT FEU-85	320'	1200"	5.6	2.9	3.2	0.0	3.2	7.9"
İ	2	1.5	0.35	240	3.1	Y11(200)M, DC	1.0	PMT EMI-9903B	1080*	3600"	2.7	1.7	2.1	0.0	1.1	4.0
Ī	3	2.0	0.35	240	3.8	Y11(200)M, DC, S-type	1.0	PMT · EMI-9903B	1860*	6200	2.5	1.3	2.1	0.0	1.1	3.7
t	3	2.0	0.35	240	3.8	Y11(200)M, DC, S-type	1.2	PMT EMI-9106B	2300	7600	2.5	1.1	2.1	0.0	0.3	3.5
ſ	4	1.5	0.25	320	3.8	Y11(200)M, DC, S-type	1.2	PMT EMI-9106B	1900	6300	2.1	1.2	2.1	0.0	0.3	3.3
Ī	3	2.0	0.35	240	3.8	Y11(200)M, DC, S-type	1.0	PIN diode 18x18 mm ²	17,700	59,000	2.5	0.4	2.1	4.0	? 0.0	5.2
	3	2.0	0.35	240	3.8	Y11(200)M, DC, S-type	1.0	Drift PIN diode C _{P0} = 0 pF	16,000	52,000	2.5	0.4	2.1	1.7	0.0	3.7
Ī	3	2.0	0.35	240	3.8	Y11(200)M, DC, S-type	1.0	APD 10x10 mm ² M = 50	16,000	40,000	2.5	0.5	2.1	Ø.1	0.0	3.3
I	5	1.5	0.25	320	3.8	Y11(200)M, DC, S-type	1.0	APD 10x10 mm ² M = 50	10,000	32,000	2.1	0.6	2.1	0.1	0.0	3.0

MPD first module assembling to tesr wrapping and mirror conditions

<u>MPD module first assembling</u> <u>file:///C:/Users/oleg/Documents/TDR_ECAL_v2.1%20(1).pdf</u>

Sampling EC : Lead + Plastic Scintillator

Molding machine and scintillator tiles examples

Depth-divided electromagnetic sampling calorimeter

- The electromagnetic calorimeter has divided on 4 tiles along beam line. The idea is to improve particles identification take in account longitudinal shower profile for electrons, muons and hadrons.
- The prototype of such calorimeter was tested at IHEP U-70 and CERN PS in 2007. The experimental results presented to particles identification in 5 GeV beam with 80% pions, 15% positrons and 5% muons.
- The design and results of studies on a beam of particles with an energy of 5 GeV of electromagnetic sampling calorimeters are presented.
- New idea proposed to crate such calorimeter type based on 'shashlik' option with longitudinal segmentation.

1,2 -Theoretical longitudinal Shower shape for electrons with different energies
2 - The longitudinal Shower shape in dependences from material density
4 – Lateral Shower shape in dependences from material density

The estimated by MC energy distribution in tiles for hadrons (black), muons (green), e⁺ - positrons (red).

A significant difference in the average energy distribution over tiles is for different particle type.

Differential SPD ECAL option

- Cell size not limited could be from 55 to 100 mm
- 25 Scintillators + Lead (3 +0.8 mm) layers per group
- Difficult create projective geometry
- 20 X₀ radiation length

Integral SPD Ecal option

- Cell size ~100x100 mm²
- 50 Scintillators + Lead (1.5 +0.4 mm) layers per group more fine granularity
- Possible projective geometry
- 15 X₀ radiation length

Monte Carlo simulation ongoing

- Preliminary results for e, pi, mu particles
- Differential and integral option are compared
- Energy range around of 1 GeV
- Shower shape should taken in account to particles identification

Rough estimation for longitudinal shower shape

More exact longitudinal shower shape

$$\frac{dE}{dt} = E_0 \ t^{\alpha} e^{-\beta t}$$

- α,β : free parameters
- t^α : at small depth number of secondaries increases ...
- e^{-βt} : at larger depth absorption dominates ...

Numbers for E = 2 GeV (approximate): $\alpha = 2, \beta = 0.5, t_{max} = \alpha/\beta$

where t = shower depth in units of X₀

t_{max} = depths where the energy deposition is maximal

The longitudinal shower shape

More exact (EGS simulation and measurements) [Longo 1985]

$$\frac{dE}{dt} = E_0 \cdot \beta \cdot \frac{(\beta t)^{\alpha - 1} e^{-\beta t}}{\Gamma(\alpha)}$$

[F: Gamma function]

where $t = shower depth in units of X_0$

The energy spectra of 5 GeV positions separated from combined beam (~85% hadrons, ~5% muons and ~10% positrons)

The total energy in calorimeter.

Black and red histograms - the spectra before and after the χ^2 rejection. The blue line – the Gaussian fit for e⁺.

Background signal is integrated and slightly visible as a small burst at 4 GeV.

Prototype for SPD Ecal front end electronic

ADC64 board used for signals digitizing

https://afi-project.jinr.ru/projects/adc64-sw/files

Power Supply system & LED control

http://hvsys.ru/

Trigger electronic for prototype testing

- 1. CAEN NIM crates
- 2. NIM Trigger logic
 - 1. Coincidences
 - 2. Discriminators
 - 3. Scaler
- 3. Fast ADC Digitizer 500 MHz
- 4. 2 Fast digital oscilloscope
- 5. 2 PC + 1 Lap-top for data taking and data analysis
- 6. 2 ADC64
- 7. Power supply units for ADC64
- 8. Ethernet Switchers for Electronic readout connection

Prototype for SPD Ecal front end electronic

- 1. Production of 36 modules: towers 55xx55 mm² in IHEP Protvino should be finished in February of 2019
- 2. Power supply electronic for SiPM (MPPC diodes) should be ready in February of 2019
- 3. 100 SiPm (6x6 mm²)– ordered in Sensl
- 4. 100 MPPCs (6x6 mm²) ordered in HAMATSY expected delivery
- 5. WLS Y11(1mm) 1000 m ordered in Sensl
- 6. WLS Y11 (1mm) 2000 m ordered in HAMATSU expected delivery
- 7. 2 ADC64 ordered in afi-elecronic group http://afi.jinr.ru/
- 8. 2 PC + 1 Lap-top for data taking and data analysis are ordered in 2018

- End of report
- Thanks all for attention