Open charm measurements at the NA61 experiment at CERN SPS

Dag Larsen Anastasia Merzlaya

Valday 2018-06-01

Outline

- Open charm measurement motivation
- NA61/SHINE experiment at CERN
- Vertex Detector (VD)
- VD event reconstruction
- Current results
- Upgrade of VD
- Summary & outlook

Model predictions

- Probability of cc pair converting into $J/\psi \rightarrow \langle cc \rangle$
- Two main approaches: dynamical and statistical models •
 - Predictions differ by factor upto 50 for PbPb at top SPS energy
- To discriminate models the $\langle cc \rangle$ produced in full phase space is • needed
 - Measurement of open charm mesons

HSD

Linnyk, Bratkovskaya, Cassing, IJMP E17

Gavai et al. IJMP A 10 2999 Braun-Munzinger, J. Stachel, PLB 490, 196

HRG, Quark Coalesc. Stat. Gavai et al. IJMP A10 2999

Braun-Munzinger, J. Stachel, PLB 490, 196

Ouark Coalesc. Dyn. Levai, Biro, Csizmadia, Csorgo, Zimanvi. JP G27, 703

Gazdzicki, Gorenstein, APP B30, 2705

D^o as signal of deconfinement

- Production of D^o is expected to be different in confined and deconfined matter
 - Confined matter: lightest charm carrier D meson; production of (DD) pair ~3.7 GeV
 - Deconfined matter: charm carrier c quark; production of $\langle cc \rangle$ pair ~2.6 GeV
 - More abundant charm production is expected in deconfined than in confined matter
- Probability of $\langle c\overline{c} \rangle$ pair hadronising to J/ψ : $P(c\overline{c} \to J/\psi) \equiv \frac{\langle J/\psi \rangle}{\langle c\overline{c} \rangle} \equiv \frac{\sigma_{J/\psi}}{\sigma_{c\overline{c}}}$
 - Measurements of on both J/ ψ and $\langle cc \rangle$ in full phase space need to calculate this probabilty

Measurment of (cc)

- Measuring D⁰, D
 ⁰, D⁺,
 D⁻ will probably give good (cc) estimate
- Charm hadrons that may be measured with VD in NA61/SHINE experiment:

Hadron	Decay channel	<i>c</i> τ̄ [μm]	BR
D^0	$\pi^+ + \mathrm{K}^-$	123	3.89%
D^+	$\pi^+ + \pi^+ + \mathrm{K}^-$	312	9.22%
D^+_S	$\pi^+ + \mathrm{K}^- + \mathrm{K}^+$	150	5.50%
Λ_{c}	$p + \pi^+ + K^-$	60	5.00%

Anormalous J/ψ supression

- NA60 experiment measured the production of J/ψ in InIn and PbPb collisions
- For lower number of participants the yields are consistent with the theoretical pQCD estimations
- However, at N_{part}~200 the result shows significant drop, known as anomalous J/ψ suppression
 - It was attributed to onset of QGP formation in nuclear collisions, however other explanations have also been proposed.
- To verify observed signature of QGP formation one needs to measure total balance of charm
 - It can be done by measurement of open charm in all channels

The NA61/SHINE facility

- VD: high-precision determination of primary vertex
- VTPC: 1.5 T magnetic field, momentum measurement, resolution: 10-4

- loss
- ToF: Time-of-flight measurements, improves particle identification
- PSD: zero-degree calorimeter, determine forward energy

Data taking capabilities

- Ion beams:
 - Primary: Ar, Xe, Pb 13A 150/160A GeV/c
 - Secondary: Be from Pb fragmentation, 13A 150/160A GeV/c
- Hadron beams:
 - Primary: proton 400 GeV/c
 - Secondary: hadron beams: pion, kaon, proton 13 400 GeV/c
- Targets:
 - Solid state from ~1 mm to ~1 m
 - Liquid hydrogen target 20 cm
- Data taking rate: 1 M events/day (currently)

Physics programme – current

- SHINE Sps Heavy Ion and Neutrino Experiment
- Strong interaction programme:
 - Search for critical point
 - Study of onset of deconfinement
- Cosmic ray programme:
 - Measurements for simulations of cosmic ray shower (Pierre Auger Observatory, CASCADE)
- Neutrino programme:
 - Measurement for simulations of initial neutrino flux (T2K, Fermilab)

Small acceptance Vertex Detector (SAVD)

- Measuring open charm requires very precise determination of secondary vertex
 - This is possible using detector based on silicon sensors
- The SAVD has 4 sensor layers (stations) 50mm apart
 - First station 50mm behind target
 - 16 sensors arranged so that covered area increases with distance to target

SAVD technology

- Sensors: MIMOSA26
 - Developed for CBM MVD prototype by IPHC Strasbourg
- Read-out: TRB board
 - Developed for CBM MVD prototype by IKF Frankfurt
- Mechanical support: light-weight carbon-fibre ladders
 - Developed for ALICE ITS upgrade by Saint-Petersburg State University
 - <0.3% X₀

Mimosa26 sensors installed on ladder

Vertex Detecor components

Integration by UJ Krakow

Event reconstruction

- Search for 4-hit tracks
 - Hits from each of 4 sensor layers are fitted with linear
 - Track candidates passing certain cuts are kept
- 4-hit tracks are fitted with parabola
 - Calculate preliminary primary vertex (point of closest approach)
 - Using primary vertex, search for 3-hit tracks
- 3-hit tracks are fitted with parabola
 - Calculate final primary vertex
- Extend TPC tracks to primary vertex
 - Pick up hits in VD along extended TPC tracks using Kalman filter

SAVD performance – PbPb at 150A GeV/c

• Sensor position resolution:

$$\sigma_{x/y} = \sqrt{\frac{2}{3}} \, \sigma_{dev_{x/y}}$$

- About 5µm as expected
- Primary vertex resolution: $\sigma_x=5\mu m$, $\sigma_y=1.8\mu m$, $\sigma_z=30\mu m$
 - Resolution less good in y because of magnetic field
 - Can discriminate in/out-of target events

Matching of tracks to TPCs

- VD tracks must be matched to correct TPC track
 - VD tracks extrapolated to TPC volume using TPC momentum
- Pre-selection: cut on y-slopes
- After further dx, dy cuts: clear correlation peaks for dp_x, dp_y
- VD track obtain momentum, PID from matched TPC track
- Offset from track matching used for callibrating VD—TPC position

D^o reconstruction

- VD needed to reconstruct primary/ secondary vertices with sufficient resolution
 - cτ(D₀)≈123µm, but with Lorentz boost (βγ≈10) the displacement is about 1mm
 - TPC vertex resolution about 1cm
- VD tracks matched to TPC tracks used
- Each VD track paired with another VD track
 - Assumed to be either kaon or pion
- Cuts applied (next slide)

Meson	Decay channel	c au	Branching ratio
D^0	$D^0 \to K^- + \pi^+$	$122.9~\mu{ m m}$	$(3.91{\pm}0.05)\%$
D^{0}	$D^0 \to K^- + \pi^+ + \pi^+ + \pi^-$	$122.9~\mu\mathrm{m}$	$(8.14 \pm 0.20)\%$
D^+	$D^+ \to K^- + \pi^+ + \pi^+$	$311.8~\mu{ m m}$	$(9.2\pm0.25)\%$
D_s^+	$D_s^+ \to K^+ + K^- \pi^+$	$149.9~\mu\mathrm{m}$	$(5.50 \pm 0.28)\%$
D^{*+}	$D^{*+} \rightarrow D^0 + \pi^+$		$(61.9 \pm 2.9)\%$

D^o background selection cuts

- Transverse momentum p_T>0.34GeV/c
- (a) Track impact parameter d>34µm
- (b) Longitudinal distance of D⁰ decay to interaction point V_z >475µm
- (c) Impact parameter for D^o candidate momentum vector D<21µm

D⁰ observation

- Result from about 140k central PbPb at 150A GeV/c events
 - However data was mainly for testing with several uncontrolled settings
 - Errors are only statistical
- HSD simulation gives about 100 D^o for 200k events
- Not yet with PID selection since TPC drift velocity currently being calibrated
 - Should reduce background by factor 5

SAVD performance – XeLa at 150A GeV/c

- VD setup much better optimised during XeLa data taking than PbPb test
- Primary vertex resolution: $\sigma_x=1.3\mu m$, $\sigma_y=1.0\mu m$, $\sigma_z=15\mu m$
 - Structure of 3 layers of La target visible
- D^o was measured indirectly by NA60 in InIn (similar size as XeLA) 160A GeV/c – VD will provide direct measurement

19

NA61/SHINE physics programme – update

- NA61/SHINE is submitting an addendum for further physics measurements using the NA61/SHINE facility
 - Strong interactions: open charm measurements
 - Cosmic rays: light ion fragmentation with intergalactic matter
 - Neutrino: further reference measurements for T2K, Hyper-K, Dune targets
- Open charm requires significantelly more statistics than current programmes
 - 80 Hz \rightarrow 1 kHz
 - Also beneficial for other programmes
- An order of magnitude higer data taking rate must be accomodated by all detectors and sub-systems
 - In particular, the TPCs and Projectile-Spectator detectors must be upgraded as well
 - Also much higer radiation dose must be accounted for
 - Next slides will show upgrade of VD to accommodate this

Upgraded VD sensor layout

- Detailed Geant simulations were carried out to find optimal cost/performace design
 - Location of VD relative to TPCs, layer location with in VD, number of sensors, etc.
- Settled for design with 46 sensors (16 for SAVD), and 4 layers as in current SAVD
 - Will allow for re-using existing mechanical support

ALPIDE sensor

- Main motivation for changing to ALPIDE sensor is faster readout
 - Additionally, it has 2 orders less noise than Mimosa26
 - Slightly larger
- It was tested last year in NA61/SHINE experiment to verify it can sustain required radiation doses
- Main down-side is less spatial resolution, but simulations show it is sufficient

Comparison (AMPT) SAVD-LAVD

Increasing the VD acceptance: $32cm^2 \rightarrow 190 cm^2$

Anticipted results (AMPT) – D⁰ & D⁰

Anticipated results (AMPT) – D⁺ & D⁻

All generated VD&TPC accepted Accepted with cuts

Upgraded VD data taking plans

- The upgraded VD is planing to start data taking 2022
 - (Possibility of early start already 2021 being discussed)
- Topics:
 - Charm yield versus centrality
 - Charm yield as signal of deconfinement
 - Open charm production mechanism (dynamical versus statistical models)

Year	Reaction	Events	$D^0 + \overline{D}^0$	$D^+ + D^-$
2022	$\mathrm{Pb}{+}\mathrm{Pb}~150A~\mathrm{GeV/c}$	$250\mathrm{M}$	38k	23k
2023	${ m Pb+Pb}~150A~{ m GeV/c}$	$250\mathrm{M}$	38k	23k
2024	$\mathrm{Pb}{+}\mathrm{Pb}~40A~\mathrm{GeV/c}$	$250\mathrm{M}$	3.6k	2.1k

	0-10%	10- $20%$	20-30%	30- $60%$	60 - 90%
$\mathbb{N}_{\mathbb{Q}} \ D^0 \!+\! \overline{D}^0$	31k	20k	11k	13k	$1.3 \mathrm{K}$
$\mathbb{N}_{\mathbb{P}} D^+ + D^-$	19k	12k	$7\mathrm{k}$	8k	$0.8 \mathrm{K}$
$\langle W \rangle$	327	226	156	70	11

500M minimum bias events in future VD.

Summary & outlook

- Small-acceptance vertex detector for NA61/SHINE experiment constructed
 - Open charm peak probably observed
 - Will take more Pb+Pb data later this year may be sufficient for preliminary results
- Upgraded vertex detector with larger acceptance and faster readout being prepared
 - Will allow to disentangle predictions from different theoretical models
 - Allow for measuring charm yields versus centrality/spectra
 - Start of data taking 2021/2022

Thank you for your attention!